All opportunities

Offers : 110

Co-Integration of Photonic Multichip Module for THz Frequency Generation

Mail Sélection

Start date : 01/10/2024

offer n° CROMA-PHOTO-03-19-2024

                                                    PhD Position 2024:

Co-Integration of Photonic Multichip Module for THz Frequency Generation

 

KEYWORDS :
Laser, Integrated Optics, TeraHertz, Communications

CONTEXT:
The technological development of communications devices, new and futures uses such as video conferencing, streaming, Internet of Things (IOT), 6G, AI, continue to further increase the pressure on telecommunications systems to reduce latency while simultaneously increasing both data rates and the number of connected devices. This recurring problem in the world of telecommunication leads to different communication generation (3G,4G, 5G…).
The frequency bands currently used for telecommunications already cover a large part of the spectrum, including the experimental bands at 60 GHz in the 5G standard. To tackle this problem, 6G plans to use sub-terahertz frequencies (>100GHz) and European roadmap expects to launch commercial products as soon as 2030. Systems operating at such frequencies are difficult to conceive because they are not compatible with standard architectures. Optical technics offer competitive solutions to reach these band, and even higher frequencies. Such realization is also of interest for a wide range of application, including spectroscopy, sensing, radars…
The ideal solution would rely on high performance integrated devices, compatible with current communications systems and capable of evolving to meet the demand of future needs.
At the CROMA laboratory, we recently demonstrated the use of co-integrated lasers on glass for communication system and the generation of continuous carrier at frequency up to terahertz (300GHz) with outstanding spectral properties.

OBJECTIVES:
The PhD work will be carried out as a part of a national research project, involving academic and industrial partners. Our goal is to fabricate a co-integrated multi-chip module for the generation and high speed modulation of terahertz signals. The candidate will focus on the design, manufacturing, characterization and simulation of the laser modules. The integrated laser chips will be produced using the technological facilities available at the CROMA,
including dedicated clean room, with the help of technical support, and advanced characterization systems (atomic force microscopy, dedicated optical benches…).
The laser chip will be optically and mechanically interfaced with a Lithium Niobate chip realized by an industrial partner, specifically for this project. Consequently, the applicant will be involved in the co-design of the two structures and in the definition of interconnecting solution of the two chips. The module will be packaged to be characterized and tested by different partners. The candidate will be involved in experiments at the different sites during
the project.

EXPECTED WORK:

  • Model and simulation of the manufacturing process, including the fabrication of waveguides using ion exchange techniques and the realization of Bragg grating by photolithographic process.
  •  Laser Manufacturing including clean room process, molecular bonding, dicing and polishing

PhD Position

  •  Characterization of components, including geometrical (AFM) and optical evaluation (mode profile, gain/loss, spectral measurements… )
  • Advanced characterizations: optical intensity noise, optical and RF linewidth will be estimated using opto-RF characterizations. Preliminary communication experiments will be carried-out at the CROMA laboratory using advanced modulations, including optical coherent formats.
  • Collaboration with industrial and academic partners from design to experimental validation.

The work plan is composed of different steps:

  • bibliographic studies to determine the current state-of-art and position the thesis results
  • Analysis and handling of in-house existing simulation tools
  •  trainings on fabrication process and characterization tools
  • reporting : technical reports, scientific publication and conferences

APPLICANTS:
We are looking for candidates inclined to develop advanced skills in the manufacturing and characterization of integrated optics and laser devices. Theoretical training in electromagnetism and laser physic is highly recommended, if not essential. The doctorate will benefit from an environment recognized both for its scientific level (in the top 5 of the world’s innovative cities, 25.000 researchers, 65000 Students…) and for its environment (French Alps).

The laboratory facilities being located in secured areas, the final decision is also depending on the acceptance of the application by a security officer.

The thesis funding is part of a national research project already underway.
Applications should include CV, cover letter, academic marks and diplomas.
Expected starting date: Oct. 2024

For more details, please contact:
Julien POËTTE julien.poette@grenoble-inp.fr
Lionel BASTARD lionel.bastard@grenoble-inp.fr
Jean-Emmanuel BROQUIN jean-emmanuel.broquin@grenoble-inp.fr

  • Keywords : Engineering sciences, Electronics and microelectronics - Optoelectronics, FMNT, IMEP-LaHc
  • Laboratory : FMNT / IMEP-LaHc
  • CEA code : CROMA-PHOTO-03-19-2024
  • Contact : julien.poette@grenoble-inp.fr

Development and implementation of microwave characterization techniques for molding resins used in 3D integrated circuit packaging

Mail Sélection

Start date : 01/11/2024

offer n° CROMA-DHREAMS-01-30-2024

Thesis topics 2024
Development and implementation of microwave characterization techniques
for molding resins used in 3D integrated circuit packaging


Contexte et objectif :

Dans le cadre d’un projet IPCEI (Projets Importants d’Intérêt Européen Commun) en  collaboration avec la société STMicroelectronics, nous nous intéressons à la caractérisation  diélectrique hautes fréquences (jusque 100 GHz) de résines de moulage. Ces dernières sont  nécessaires à la réalisation des boitiers d’encapsulation (packaging) des circuits intégrés 3D.
Le rôle des boitiers est d’assurer une isolation électrique et une protection mécanique des  circuits intégrés.

La caractérisation consiste à déterminer les propriétés électriques des résines, notamment la permittivité complexe (appelée aussi « fonction diélectrique » ou paramètres diélectriques), sur une large bande de fréquence (1 GHz – 100 GHz). Elle requiert deux étapes : une étape de mesure hyperfréquence et une étape d’extraction de la fonction diélectrique à partir des paramètres mesurés.
La connaissance des propriétés électriques des résines est essentielle pour évaluer et prédire les performances des circuits intégrés(C.I.). Le cas échéant, les performances des C.I. pourront être optimisées en choisissant les résines ayant les meilleures propriétés pour une application donnée.

Description de travaux à réaliser :
L’originalité de ce travail de thèse consiste à mettre en œuvre différentes techniques microondes ou hyperfréquence de caractérisation afin d’extraire les paramètres diélectriques des résines de moulage sur un large spectre de fréquence.
Les techniques à développer pourront dans un premier temps s’appuyer sur des méthodes classiques et connues, si les contraintes liées à leurs mises en œuvre restent limitées. Il s’agit en particulier des techniques de caractérisation suivantes :

  • En lignes de transmission, en guides d’ondes. Techniques large bande de fréquence dites guidées.
  • En cavités résonantes, résonateurs en ligne de transmission ou en anneau. Techniques à fréquences discrètes dites résonnantes.

L’intérêt de mettre en œuvre les différentes techniques exposées ci-avant réside dans la possibilité de réaliser des comparaisons croisées des résultats obtenus. Ceci permettra aussi de pouvoir valider des techniques récemment développées ou inédites dans leur mise en œuvre, potentiellement bien mieux adaptées à notre problématique. Ces techniques sont décrites ci-après, leurs développements figurent aussi au programme de ces travaux de thèse.
Dans une seconde étape, il sera demandé d’apporter une contribution conséquente sur :

  • Le perfectionnement d’une méthode de caractérisation [1] [2] ne demandant pas de concevoir des dispositifs ou cellules de test spécifiques : le matériau (la résine de moulage) est analysé tel qu’il se présente. Il s’agit d’une méthode dite par « posé de pointes » que le laboratoire a commencé à développer et qui a fait l’objet de deux publications. Cette méthode demande néanmoins des améliorations sur les aspects suivants :
    * La précision des pertes diélectriques extraites (rappels : les pertes diélectriques sont associées à la partie imaginaire de la permittivité complexe d’un matériau).         * Le fait de pouvoir s’affranchir de la mesure d’un second matériau de référence pour pouvoir extraire la permittivité complexe des résines de moulage, le premier matériau de référence étant l’air. Des réflexions sont actuellement menées pour s’affranchir de cette mesure étant donné qu’elle conduit à faire une hypothèse forte sur le processus de caractérisation.

Le développement d’une méthode de caractérisation en espace libre. Ce travail est encore inédit pour le laboratoire, notamment au regard des fréquences visées et des contraintes engendrées par la faible maturité technologique (l’échantillon de test ne peut pas prendre toutes les formes et dimensions à souhait) des résines de moulage. L’échantillon de résine de moulage sera placé entre deux antennes [3]. L’analyse pourra s’effectuer au moyen :

  •  d’une mesure différentielle en transmission de l’échantillon.
  •  d’une routine d’extraction des paramètres diélectriques. Cette routine sera à développer.

Dans cette technique, les antennes étant forcément opérationnelles sur une plage de fréquences donnée, la mesure n’est plus dite large bande. Ainsi, il est envisagé d’utiliser plusieurs jeux d’antennes pour couvrir un spectre de fréquence plus large.

Une ouverture sur un travail conduisant au développement d’une technique de caractérisation qui permet l’extraction de la fonction magnétique, conjointement à celle diélectrique, est également envisagée. L’impact de la température et des procédés de fabrication microélectronique sur ces fonctions pourra également être étudié ainsi que les performances d’un composant typique (ligne de transmission par exemple) en présence de la
résine de moulage.

Pour débuter les travaux sur des bases solides et des pistes pertinentes, il s’agira de réaliser préalablement une étude bibliographique des différentes techniques de caractérisation existantes et une analyse fine de l’état de l’art. Une synthèse de cette étude sera à produire.

Laboratoire d’accueil et lieux des travaux :
Le doctorant ou la doctorante sera accueilli et réalisera ses travaux dans les locaux du laboratoire CROMA, sur le site du Bourget du Lac (UMR CNRS 5130, Bâtiment Chablais, 21 rue du lac de la Thuile, 73376 Le Bourget du Lac).
Il sera amené à se déplacer au sein de l’entreprise STMicroelectronics (12 Rue Horowitz, 38000 Grenoble) pour participer à l’élaboration (conception et fabrication) de dispositifs et échantillons de test. Dans le cadre de la collaboration avec STMicroelectronics, l’entreprise aura donc la charge de fournir tous les véhicules de test nécessaires à l’analyse des résines de moulage.

Rayonnement scientifique :
Le doctorant ou la doctorante s’impliquera dans la valorisation des résultats obtenus en les présentant dans des congrès nationaux et internationaux.

Formation du doctorant :
Le doctorant ou la doctorante suivra une formation sur la prise en main du logiciel de simulation électromagnétique Ansys HFSS, ainsi que celle qui traite des techniques de mesure hyperfréquence sur les équipements disponibles au laboratoire.

Équipements expérimentaux utilisés :
Le site du Bourget du Lac est équipé d’une plateforme de mesure hyperfréquence qui inclut (entre autres) :

    •  Un analyseur vectoriel de réseaux Keysight PNA-X N5247A (4 ports jusque 67 GHz, avec extension 110 GHz sur 2 ports).
    • Une station de mesure sous pointes Elite 300 pour mesure C. I. sur Wafer 200 et 300 mm
    • Pour les besoins de rétro-simulations, un profilomètre KLA D500 est aussi à disposition pour obtenir les grandeurs géométriques réelles des dispositifs mesurés.

Profil recherché :

  • Niveau d’étude : Master 2R ou Ingénieur en électronique et Radiofréquence.
  • Compétences :
    * Connaissances requises sur l’électromagnétisme, les circuits hautes fréquence.
    * Connaissances appréciées sur la physique des matériaux diélectriques et magnétiques, les logiciels de simulation électromagnétique (tels que HFSS, CST, ADS) et les appareils de mesure radiofréquence (tels que VNA : Vector Network Analyzer).
    *Une maîtrise de la langue anglaise sera appréciée

Expériences : une expérience (stage, projet d’études, …) dans le domaine RF sera appréciée.

Pour candidater :
Envoyez-nous votre CV et lettre de motivation avant le 30/06/2024. La thèse peut démarrer au plus tard le 01/11/2024.

Inscription et salaire :
Le doctorant ou la doctorante s’inscrira à l’école doctorale EEATS et recevra une rémunération mensuelle de 2300€ bruts durant ses 3 années de thèse.

Publications en lien avec ce travail :
[1] https://doi.org/10.1016/j.mejo.2021.104990
[2] https://doi.org/10.1109/SaPIW.2018.8401670
[3] http://dx.doi.org/10.1109/TIM.2006.884283

Contacts :
Gregory Houzet , 04-79-75-81-59, gregory.houzet@univ-smb.fr
Thierry Lacrevaz, 04-79-75-87-46  thierry.lacrevaz@univ-smb.fr

Université Savoie Mont Blanc
Laboratoire CROMA, UMR CNRS 5130, Bâtiment le Chablais
21 rue du lac de la Thuile
73376 Le Bourget du Lac Cedex FRANCE

  • Keywords : Engineering sciences, Electronics and microelectronics - Optoelectronics, FMNT, IMEP-LaHc
  • Laboratory : FMNT / IMEP-LaHc
  • CEA code : CROMA-DHREAMS-01-30-2024
  • Contact : gregory.houzet@univ-smb.fr

Photonic physical unclonable functions for secure neuromorphic accelerators.

Mail Sélection

Start date : 01/01/2024

offer n° IMEPLAHC-PHOTO-10-27-2023

PHOTONIC PHYSICAL UNCLONABLE FUNCTIONS FOR SECURE NEUROMORPHIC PHOTONIC ACCELERATORS

Application deadline  :
FRIDAY 3 NOVEMBER 2023

The rising needs of processing information at the edge for low latency, high speeds, and energy efficiency purposes leveraging edge-computing as well as IoT devices (75 billion expected by 2025) for data collection and processing demands for more robust and reliable security layers to guarantee hardware integrity and information security.  Security layers are a fundamental part of our hardware and digital infrastructure fulfilling several key functions e.g.,  assuring that a hardware sub-system is not counterfeit, that a client has authentication rights onto a server or that  generated/processed data come from a non-corrupted accelerator. Counterfeiting poses a serious threat to the  security of large-scale systems relying on the integration of several sub-systems e.g., counterfeit chips have been  found in ballistic missiles and fighter jets. Besides, the massive exchange of sensitive data in the context of edge
computing for applications such as autonomous driving, requires that pitfalls shall not be exploited by an attacker to
compromise the security of the platform.

The focus of this work will be to develop novel security layers that do not rely on the physical storage of a digital secret key in memory, potentially accessible exploiting SW or HW vulnerabilities. Physical unclonable functions (PUFs) represent a recent class of security layers that can be used for applications in cryptography e.g., end-to-end encryption, blockchain, secure data storage etc. Fabrication tolerances in CMOS platforms guarantee the intrinsic HW
unclonable character of such solutions and contribute to the complexity of their behavior for well-designed  architectures.

Although electronic PUFs are currently predominant, they have been shown to be vulnerable to machine learning  attacks. Conversely, photonic PUFs have demonstrated an increased strength against machine learning attacks due to  their richer responses and larger number of physical quantities for key generation e.g., phase, amplitude, polarization  as well as superior stability and manifold implementations of optical non-linearities.

In the framework of the Horizon Europe research project NEUROPULS (NEUROmorphic energy-efficient secure  accelerators based on Phase change materials aUgmented siLicon photonicS), the PHOTO group at IMEP-LAHC aims to develop novel silicon photonic PUFs for hardware integrity and information security. This work will allow IMEC-LAHCand the other consortium partners involved in security tasks to explore various security protocols at a prototype level (photonic chips will be fabricated by CEA-LETI in a worldwide unique silicon photonics platform with III-V and phasechange materials monolithically integrated) for the next-generation of hardware accelerators based on photonic  neuromorphic architectures interfaced with RISC-V core processors to target edge-computing applications.

In this context we are currently looking for a (m/f) PhD student for a 3-year contract.

JOB DESCRIPTION
This thesis aims to explore novel implementations of photonic PUFs based on CMOS-compatible Silicon Photonics approaches for applications in hardware integrity (identification) and information security (secure authentication, data signature, encryption…).
The work will involve (i) exploring various photonic architectures by means of system-level simulations considering the  role of fabrication tolerances on the device modelling, (ii) assessing experimentally the performance of the prototypes  (fabrication carried out by CEA-LETI), (iii) carrying out an experimental analysis in terms of robustness and reliability by  exploiting techniques well-known in the PUF and reliability communities, and (iv) proposing novel device/system  designs and strategies to build more robust and reliable PUFs. The work will involve behavioral and system-level modeling of photonic devices and architectures, robustness and reliability analysis of the designed architectures, and the proposal of novel design/system-level solutions.

PROFILE
You have or are about to obtain an MSc in Electronic or Physical Engineering with strong experience in at least one of  the following areas: analog / digital / photonic integrated circuit design, multi-disciplinary or system-level modelling.
Previous experience in design and characterization of photonic devices/systems is a plus. Excellent written and verbal  communication skills in English. Fluency in French is also a plus, but not mandatory.

About IMEP-LaHC and PHELMA
The Institut de Microélectronique Electromagnétisme Photonique & LAboratoire d’Hyperfréquences & de Caractérisation, IMEP-LaHC, is a « unité mixte de recherche » (CNRS / Grenoble INP / UGA / Université Savoie Mont Blanc) of 110 people strongly committed in research activities related to micro- and nano-electronics, microphotonics, micro- and nano-systems, microwaves and microwave-photonics. The PHOtonics Terahertz and Optoelectronics (PHOTO) group is a leader in the broad field of photonics and high-speed frequencies, with research projects and collaborations at both national, European, and international level.
Grenoble Institute of Technology (PHELMA school), who issues the PhD degree, is a member of the “Grandes Écoles”, a prestigious group of French institutions dedicated to engineering and scientific research.
More information about the scientific and industrial environment around Grenoble and its surroundings can be found  here:
https://www.nature.com/articles/d41586-023-00109-x

Send CV and statement of purpose (in English or French) to
Fabio Pavanello – email: fabio.pavanello@cnrs.fr

  • Keywords : Engineering science, Engineering sciences, Electronics and microelectronics - Optoelectronics, Electronics and microelectronics - Optoelectronics, FMNT, IMEP-LaHc
  • Laboratory : FMNT / IMEP-LaHc
  • CEA code : IMEPLAHC-PHOTO-10-27-2023
  • Contact : fabio.pavanello@cnrs.fr

(filled) Multi-feed reconfigurable antenna system using bio-sourced substrate for the sub-7 GHz 5G and beyond

Mail Sélection

Start date : 02/10/2023

offer n° IMEPLAHC-DHREAMS-04-18-2023

Thesis offer
Multi-feed reconfigurable antenna system using bio-sourced
substrate for the sub-7 GHz 5G and beyond

 

 

Context and objective:
The ICT sector contributed to about 3% of the worldwide CO2 emissions and this percentage is increasing with the increase in communication needs [1]. To meet the requirements of a high data rate communication system as well as low environmental impact, the PERSEUS project has been initiated in the frame of the PEPR-5G program.
This project aims at developing the sub-7 GHz (700 MHz – 7 GHz) for an energy-efficient and eco-friendly system.

Several approaches could be considered to reach this objective including the well-known 3Rs: “reduce, reuse, and recycle”. The bio-sourced materials [2] (e.g., paper [3][7], nano-cellulose conductive ink [7], plant-derived PLA (polylactic acid) [8]) could be used to reduce the need for fossil and rare resources. At the end of the life cycle, the bio-sourced materials could be recycled or decomposed to reduce the environmental impacts. The reconfigurable or modular systems could also be considered for sustainable electronics.

In this context, the DHREAMS team from the IMEP-LaHC laboratory (UMR 5130) aims at developing a multi-feed reconfigurable antenna system using bio-sourced substrate.
The multi-feed allows at the same time the modification of incident signal to change the antenna behaviors (frequency and radiation) and the integration of distributed amplifiers to increase the power efficiency [9]-[11]. To further reduce the losses in powercombining, the multi-function antenna will be considered to “remove” the matching network between the antenna and active components (UNICA) [12].

Workplan :
In order to fulfill our objectives, the Ph.D. candidate has to realize the following tasks:

➢ Literature review on the existing bio-sourced substrate in considering their physical (RF, mechanical, thermal) properties.
➢ Propose one or several potential bio-sourced substrates that could be used to develop the sub-7 GHz 5G systems.
➢ Complete this literature review by considering the reconfigurable (and) multi-feed antenna.
➢ Design and characterize some conventional antennas (with one feeding source) using the selected bio-sourced substrate(s) to identify and minimize the sources of error and to master the fabrication process.
➢ Design and characterize multi-feed antenna using selected bio-sourced substrate to evaluate the power handing capability in considering the integration with electronics components for reconfigurability.
➢ Design and characterize multi-feed reconfigurable antenna using selected bio-sourced substrate.
➢ Design and characterize active antenna with a distributed network of amplifiers using the UNICA concept.

Profile:

➢ Education level: Master 2R or Engineer in RF and electronics.
➢ Competences:
• Knowledge in electromagnetism, antenna, and RF components is required.
• Knowledge in electromagnetism simulation tools (e.g., CST, HFSS, ADS) and the RF measurement equipment (e.g., VNA, spectrum analyzer) will be appreciated.
• Fluency in English will be appreciated.
➢ Experiences: an experience (internship, study project, …) in the RF domain is expected.
➢ Being motivated in sustainable electronics is a plus.

Laboratory:
The Ph.D. candidate will join the DHREAMS team from the IMEP-LaHC laboratory (UMR 5130), 03 Parvis Louis Néel, 38016 Grenoble Cedex 1.

Supervisors:
Pr. Pascal XAVIER
Pr. Tan Phu VUONG
MCF. Nhu Huan NGUYEN

How to apply:
Please send us your CV and motivation letter BEFORE 12 MAY 2023.

Registration and financial support:
The Ph.D. candidate will have to register at the doctoral school EEATS and will receive financial support of about 2044.12€ / month (BRUT).

References:
[1] J. Malmodin and D. Lundén, “The Energy and Carbon Footprint of the Global ICT and E&M Sectors 2010–2015,” Sustainability, vol. 10, no. 9, p. 3027, Aug. 2018, doi: 10.3390/su10093027.

[2] https://www.ecologie.gouv.fr/materiaux-construction-biosources-et-geosources

[3] Ines Kharrat. Modélisation et réalisation d’un système de récupération d’énergie imprimé : caractérisation hyperfréquence des matériaux papiers utilisés. Optique / photonique. Université de Grenoble, 2014. Français. ffNNT : 2014GRENT106ff. fftel-01314122.

[4] Do Hanh Ngan Bui. Printed flexible antenna for energy harvesting. Optics / Photonic. Université Grenoble Alpes, 2017. English. ffNNT : 2017GREAT062ff. fftel-01721461f.

[5] Hong Phuong Phan. Design of 2D and 3D antennas on flexible materials. Optics / Photonic. Université Grenoble Alpes, 2018. English. ffNNT : 2018GREAT106ff. fftel-021388.

[6] Erika Vandelle. Exploration of antenna and passive beamforming techniques for wireless energy harvesting and transfer. Optics / Photonic. Université Grenoble Alpes, 2019. English. NNT : 2019GREAT060. tel-02905411.

[7] Maxime Wawrzyniak. Development of innovative and transparent radio frequency devices based on nanocelluloses silver nanowires hybrid system. Université Grenoble Alpes, soutenue en 2022.

[8] P. Xavier, G. Zakka El Nashef, E. Perrin, F. Jestin, D. Rauly, N. Corrao, et N. Chevalier, “Dispositifs hyperfréquences à faible impact environnemental,” Journées Nationales Microondes (JNM), Limoges, France, Juin 2022.

[9] S. Li, T. Chi, J. S. Park and H. Wang, “A multi-feed antenna for antenna-level power combining,” 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), Fajardo, PR, USA, 2016, pp. 1589-1590, doi: 10.1109/APS.2016.7696501.

[10] H. Wang et al., “Towards Energy-Efficient 5G Mm-Wave links: Exploiting broadband Mm-Wave doherty power amplifier and multi-feed antenna with direct on-antenna power combining,” 2017 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), Miami, FL, USA, 2017, pp. 30-37,
doi: 10.1109/BCTM.2017.8112905.

[11] S. Li, T. Chi and H. Wang, “Multi-Feed Antenna and Electronics Co-Design: An E-Band Antenna- LNA Front End With On-Antenna Noise-Canceling and G
ₘ-Boosting,” in IEEE Journal of Solid- State Circuits, vol. 55, no. 12, pp. 3362-3375, Dec. 2020, doi: 10.1109/JSSC.2020.3024592.

[12] S. N. Nallandhigal and K. Wu, “Unified and Integrated Circuit Antenna in Front End—A Proof of Concept,” in IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 1, pp. 347-364, Jan. 2019, doi: 10.1109/TMTT.2018.2872962.

  • Keywords : Engineering sciences, Electronics and microelectronics - Optoelectronics, FMNT, IMEP-LaHc
  • Laboratory : FMNT / IMEP-LaHc
  • CEA code : IMEPLAHC-DHREAMS-04-18-2023
  • Contact : nhu-huan.nguyen@grenoble-inp.fr
  • This Thesis position has been filled. Thank you for your interest

(filled) Integrated Photonic on glass for THz Frequency Generation

Mail Sélection

Start date : 02/10/2023

offer n° IMEPLAHC-PHOTO-04-18-2023

 

PhD position
Integrated Photonic on glass for THz Frequency Generation

The thesis will focus on the development of co-integrated Glass DFB Lasers for THz generation and  the demonstration to high speed communications. Several advanced applications, such as next wireless  communication system (6G and beyond), spectroscopes and radars require high purity radio frequency  signals. These lasts are more and more difficult to generate as the signal frequency increases using  conventional electrical techniques. Solutions based on heterodyning of optical sources have  demonstrated to be the preferred way to produce frequencies higher than 100GHz (aka THz  frequencies).
We already demonstrated the potential of the ion exchanges platform for the generation of 300GHz communication signals, y integrating several lasers in a single glass chip. The intrinsic coherence of  those lasers, several orders of magnitude better than those based on other integrated technologies allow implementing advanced modulation formats such as QAM and OFDM to further improve the  transmission capabilities of THz communication systems.

The objective of this PhD is to enhance the performances our integrated glass chips to reach frequency  up to 600GHz. Different solutions have already been identified, like integrating distinct Bragg gratings in a single glass chip for example. The laser stability will also be improved through the insertion of
phase shifts in laser cavities.
Another objective is to integrate specific technologies to enhance the module: we will associate two  different chips in a single module for specific functions. One module will be dedicated to the laser  sources, and another module will consist of advanced Lithium Niobate modulators dedicated to optical  coherent communications. The multi-chip module will be integrated in a compact package, interfaced  with optical fibres and electrical DC and RF ports.
In order to qualify the modules and demonstrate their potential for high demanding applications such  as telecommunication, advanced characterization will be implemented. As an example, both spectral  and time domain characterisation will be analysed to study the laser frequency noise dynamic and  noise transfer to the THz signal during the heterodyning process. Detailed studies based on frequency  Allan variance will be used to qualify and determine the different contributions to laser linewidth.
Finally, the chips will be inserted in communication links using advanced modulation formats to  demonstrate the capabilities of the ion exchange platform for THz communications.

The PhD work will benefit from worldwide recognized know-how and facilities of the IMEP-LAHC  laboratory, including clean rooms access, and advanced characterizations set-ups. Some aspects of the  work will benefit from existing collaborations, for modulator chip, for advanced THz characterizations
and system demonstrations.

As the applicant will work in an interactive team and will be in direct contact with industrial and  academic partners, we are looking for someone willing to work in a collaborative environment. The  work requires experimental fabrication, characterization and analysis, but also strong theoretical  knowledge to understand the origin of the system perturbations and their impacts on the final  application. Consequently, we are looking for candidates having susceptibility for experimental work,  and strong will to develop their theoretical backgrounds in the following fields:
Laser Physics, High speed optical systems, Noise analysis.

Starting date: Oct. 2023
For more details, please contact:
Julien POËTTE julien.poette@grenoble-inp.fr
Lionel BASTARD lionel.bastard@grenoble-inp.fr
Jean-Emmanuel BROQUIN jean-emmanuel.broquin@grenoble-inp.fr

  • Keywords : Engineering sciences, Electronics and microelectronics - Optoelectronics, Electronics and microelectronics - Optoelectronics, IMEP-LaHc, LMGP
  • Laboratory : IMEP-LaHc / LMGP
  • CEA code : IMEPLAHC-PHOTO-04-18-2023
  • Contact : julien.poette@grenoble-inp.fr
  • This Thesis position has been filled. Thank you for your interest
More information
X