Offres de Thèses, Stages et Post-docs

nombre d'offres : 119

Développement et mise en œuvre de méthodes de caractérisation hyperfréquence des résines de moulages destinées au packaging de circuits intégrés 3D

Mail Sélection

Date de début : 01/11/2024

Offre n° CROMA-DHREAMS-30-01-2024

Offre de Thèse
Développement et mise en œuvre de méthodes de caractérisation
hyperfréquence des résines de moulages destinées au packaging de circuits intégrés 3D

 


Contexte et objectif :

Dans le cadre d’un projet IPCEI (Projets Importants d’Intérêt Européen Commun) en  collaboration avec la société STMicroelectronics, nous nous intéressons à la caractérisation  diélectrique hautes fréquences (jusque 100 GHz) de résines de moulage. Ces dernières sont  nécessaires à la réalisation des boitiers d’encapsulation (packaging) des circuits intégrés 3D.
Le rôle des boitiers est d’assurer une isolation électrique et une protection mécanique des  circuits intégrés.

La caractérisation consiste à déterminer les propriétés électriques des résines, notamment la permittivité complexe (appelée aussi « fonction diélectrique » ou paramètres diélectriques), sur une large bande de fréquence (1 GHz – 100 GHz). Elle requiert deux étapes : une étape de mesure hyperfréquence et une étape d’extraction de la fonction diélectrique à partir des paramètres mesurés.
La connaissance des propriétés électriques des résines est essentielle pour évaluer et prédire les performances des circuits intégrés(C.I.). Le cas échéant, les performances des C.I. pourront être optimisées en choisissant les résines ayant les meilleures propriétés pour une application donnée.

Description de travaux à réaliser :
L’originalité de ce travail de thèse consiste à mettre en œuvre différentes techniques microondes ou hyperfréquence de caractérisation afin d’extraire les paramètres diélectriques des résines de moulage sur un large spectre de fréquence.
Les techniques à développer pourront dans un premier temps s’appuyer sur des méthodes classiques et connues, si les contraintes liées à leurs mises en œuvre restent limitées. Il s’agit en particulier des techniques de caractérisation suivantes :

  • En lignes de transmission, en guides d’ondes. Techniques large bande de fréquence dites guidées.
  • En cavités résonantes, résonateurs en ligne de transmission ou en anneau. Techniques à fréquences discrètes dites résonnantes.

L’intérêt de mettre en œuvre les différentes techniques exposées ci-avant réside dans la possibilité de réaliser des comparaisons croisées des résultats obtenus. Ceci permettra aussi de pouvoir valider des techniques récemment développées ou inédites dans leur mise en œuvre, potentiellement bien mieux adaptées à notre problématique. Ces techniques sont décrites ci-après, leurs développements figurent aussi au programme de ces travaux de thèse.
Dans une seconde étape, il sera demandé d’apporter une contribution conséquente sur :

  • Le perfectionnement d’une méthode de caractérisation [1] [2] ne demandant pas de concevoir des dispositifs ou cellules de test spécifiques : le matériau (la résine de moulage) est analysé tel qu’il se présente. Il s’agit d’une méthode dite par « posé de pointes » que le laboratoire a commencé à développer et qui a fait l’objet de deux publications. Cette méthode demande néanmoins des améliorations sur les aspects suivants :
    * La précision des pertes diélectriques extraites (rappels : les pertes diélectriques sont associées à la partie imaginaire de la permittivité complexe d’un matériau).         * Le fait de pouvoir s’affranchir de la mesure d’un second matériau de référence pour pouvoir extraire la permittivité complexe des résines de moulage, le premier matériau de référence étant l’air. Des réflexions sont actuellement menées pour s’affranchir de cette mesure étant donné qu’elle conduit à faire une hypothèse forte sur le processus de caractérisation.

Le développement d’une méthode de caractérisation en espace libre. Ce travail est encore inédit pour le laboratoire, notamment au regard des fréquences visées et des contraintes engendrées par la faible maturité technologique (l’échantillon de test ne peut pas prendre toutes les formes et dimensions à souhait) des résines de moulage. L’échantillon de résine de moulage sera placé entre deux antennes [3]. L’analyse pourra s’effectuer au moyen :

  •  d’une mesure différentielle en transmission de l’échantillon.
  •  d’une routine d’extraction des paramètres diélectriques. Cette routine sera à développer.

Dans cette technique, les antennes étant forcément opérationnelles sur une plage de fréquences donnée, la mesure n’est plus dite large bande. Ainsi, il est envisagé d’utiliser plusieurs jeux d’antennes pour couvrir un spectre de fréquence plus large.

Une ouverture sur un travail conduisant au développement d’une technique de caractérisation qui permet l’extraction de la fonction magnétique, conjointement à celle diélectrique, est également envisagée. L’impact de la température et des procédés de fabrication microélectronique sur ces fonctions pourra également être étudié ainsi que les performances d’un composant typique (ligne de transmission par exemple) en présence de la
résine de moulage.

Pour débuter les travaux sur des bases solides et des pistes pertinentes, il s’agira de réaliser préalablement une étude bibliographique des différentes techniques de caractérisation existantes et une analyse fine de l’état de l’art. Une synthèse de cette étude sera à produire.

Laboratoire d’accueil et lieux des travaux :
Le doctorant ou la doctorante sera accueilli et réalisera ses travaux dans les locaux du laboratoire CROMA, sur le site du Bourget du Lac (UMR CNRS 5130, Bâtiment Chablais, 21 rue du lac de la Thuile, 73376 Le Bourget du Lac).
Il sera amené à se déplacer au sein de l’entreprise STMicroelectronics (12 Rue Horowitz, 38000 Grenoble) pour participer à l’élaboration (conception et fabrication) de dispositifs et échantillons de test. Dans le cadre de la collaboration avec STMicroelectronics, l’entreprise aura donc la charge de fournir tous les véhicules de test nécessaires à l’analyse des résines de moulage.

Rayonnement scientifique :
Le doctorant ou la doctorante s’impliquera dans la valorisation des résultats obtenus en les présentant dans des congrès nationaux et internationaux.

Formation du doctorant :
Le doctorant ou la doctorante suivra une formation sur la prise en main du logiciel de simulation électromagnétique Ansys HFSS, ainsi que celle qui traite des techniques de mesure hyperfréquence sur les équipements disponibles au laboratoire.

Équipements expérimentaux utilisés :
Le site du Bourget du Lac est équipé d’une plateforme de mesure hyperfréquence qui inclut (entre autres) :

    •  Un analyseur vectoriel de réseaux Keysight PNA-X N5247A (4 ports jusque 67 GHz, avec extension 110 GHz sur 2 ports).
    • Une station de mesure sous pointes Elite 300 pour mesure C. I. sur Wafer 200 et 300 mm
    • Pour les besoins de rétro-simulations, un profilomètre KLA D500 est aussi à disposition pour obtenir les grandeurs géométriques réelles des dispositifs mesurés.

Profil recherché :

  • Niveau d’étude : Master 2R ou Ingénieur en électronique et Radiofréquence.
  • Compétences :
    * Connaissances requises sur l’électromagnétisme, les circuits hautes fréquence.
    * Connaissances appréciées sur la physique des matériaux diélectriques et magnétiques, les logiciels de simulation électromagnétique (tels que HFSS, CST, ADS) et les appareils de mesure radiofréquence (tels que VNA : Vector Network Analyzer).
    *Une maîtrise de la langue anglaise sera appréciée

Expériences : une expérience (stage, projet d’études, …) dans le domaine RF sera appréciée.

Pour candidater :
Envoyez-nous votre CV et lettre de motivation avant le 30/06/2024. La thèse peut démarrer au plus tard le 01/11/2024.

Inscription et salaire :
Le doctorant ou la doctorante s’inscrira à l’école doctorale EEATS et recevra une rémunération mensuelle de 2300€ bruts durant ses 3 années de thèse.

Publications en lien avec ce travail :
[1] https://doi.org/10.1016/j.mejo.2021.104990
[2] https://doi.org/10.1109/SaPIW.2018.8401670
[3] http://dx.doi.org/10.1109/TIM.2006.884283

Contacts :
Gregory Houzet , 04-79-75-81-59, gregory.houzet@univ-smb.fr
Thierry Lacrevaz, 04-79-75-87-46  thierry.lacrevaz@univ-smb.fr

Université Savoie Mont Blanc
Laboratoire CROMA, UMR CNRS 5130, Bâtiment le Chablais
21 rue du lac de la Thuile
73376 Le Bourget du Lac Cedex FRANCE

  • Mots clés : Sciences pour l'ingénieur, Electronique et microélectronique - Optoélectronique, FMNT, IMEP-LaHc
  • Laboratoire : FMNT / IMEP-LaHc
  • Code CEA : CROMA-DHREAMS-30-01-2024
  • Contact : gregory.houzet@univ-smb.fr

Développement de fonctions physiques non-clonables pour accélérateurs neuromorphiques sécurisés.

Mail Sélection

Date de début : 01/01/2024

Offre n° IMEPLAHC-PHOTO-27-10-2023

PHOTONIC PHYSICAL UNCLONABLE FUNCTIONS FOR SECURE NEUROMORPHIC PHOTONIC ACCELERATORS

Application deadline  :
FRIDAY 3 NOVEMBER 2023

The rising needs of processing information at the edge for low latency, high speeds, and energy efficiency purposes leveraging edge-computing as well as IoT devices (75 billion expected by 2025) for data collection and processing demands for more robust and reliable security layers to guarantee hardware integrity and information security.  Security layers are a fundamental part of our hardware and digital infrastructure fulfilling several key functions e.g.,  assuring that a hardware sub-system is not counterfeit, that a client has authentication rights onto a server or that  generated/processed data come from a non-corrupted accelerator. Counterfeiting poses a serious threat to the  security of large-scale systems relying on the integration of several sub-systems e.g., counterfeit chips have been  found in ballistic missiles and fighter jets. Besides, the massive exchange of sensitive data in the context of edge
computing for applications such as autonomous driving, requires that pitfalls shall not be exploited by an attacker to
compromise the security of the platform.

The focus of this work will be to develop novel security layers that do not rely on the physical storage of a digital secret key in memory, potentially accessible exploiting SW or HW vulnerabilities. Physical unclonable functions (PUFs) represent a recent class of security layers that can be used for applications in cryptography e.g., end-to-end encryption, blockchain, secure data storage etc. Fabrication tolerances in CMOS platforms guarantee the intrinsic HW
unclonable character of such solutions and contribute to the complexity of their behavior for well-designed  architectures.

Although electronic PUFs are currently predominant, they have been shown to be vulnerable to machine learning  attacks. Conversely, photonic PUFs have demonstrated an increased strength against machine learning attacks due to  their richer responses and larger number of physical quantities for key generation e.g., phase, amplitude, polarization  as well as superior stability and manifold implementations of optical non-linearities.

In the framework of the Horizon Europe research project NEUROPULS (NEUROmorphic energy-efficient secure  accelerators based on Phase change materials aUgmented siLicon photonicS), the PHOTO group at IMEP-LAHC aims to develop novel silicon photonic PUFs for hardware integrity and information security. This work will allow IMEC-LAHCand the other consortium partners involved in security tasks to explore various security protocols at a prototype level (photonic chips will be fabricated by CEA-LETI in a worldwide unique silicon photonics platform with III-V and phasechange materials monolithically integrated) for the next-generation of hardware accelerators based on photonic  neuromorphic architectures interfaced with RISC-V core processors to target edge-computing applications.

In this context we are currently looking for a (m/f) PhD student for a 3-year contract.

JOB DESCRIPTION
This thesis aims to explore novel implementations of photonic PUFs based on CMOS-compatible Silicon Photonics approaches for applications in hardware integrity (identification) and information security (secure authentication, data signature, encryption…).
The work will involve (i) exploring various photonic architectures by means of system-level simulations considering the  role of fabrication tolerances on the device modelling, (ii) assessing experimentally the performance of the prototypes  (fabrication carried out by CEA-LETI), (iii) carrying out an experimental analysis in terms of robustness and reliability by  exploiting techniques well-known in the PUF and reliability communities, and (iv) proposing novel device/system  designs and strategies to build more robust and reliable PUFs. The work will involve behavioral and system-level modeling of photonic devices and architectures, robustness and reliability analysis of the designed architectures, and the proposal of novel design/system-level solutions.

PROFILE
You have or are about to obtain an MSc in Electronic or Physical Engineering with strong experience in at least one of  the following areas: analog / digital / photonic integrated circuit design, multi-disciplinary or system-level modelling.
Previous experience in design and characterization of photonic devices/systems is a plus. Excellent written and verbal  communication skills in English. Fluency in French is also a plus, but not mandatory.

About IMEP-LaHC and PHELMA
The Institut de Microélectronique Electromagnétisme Photonique & LAboratoire d’Hyperfréquences & de Caractérisation, IMEP-LaHC, is a « unité mixte de recherche » (CNRS / Grenoble INP / UGA / Université Savoie Mont Blanc) of 110 people strongly committed in research activities related to micro- and nano-electronics, microphotonics, micro- and nano-systems, microwaves and microwave-photonics. The PHOtonics Terahertz and Optoelectronics (PHOTO) group is a leader in the broad field of photonics and high-speed frequencies, with research projects and collaborations at both national, European, and international level.
Grenoble Institute of Technology (PHELMA school), who issues the PhD degree, is a member of the “Grandes Écoles”, a prestigious group of French institutions dedicated to engineering and scientific research.
More information about the scientific and industrial environment around Grenoble and its surroundings can be found  here:
https://www.nature.com/articles/d41586-023-00109-x

Send CV and statement of purpose (in English or French) to
Fabio Pavanello – email: fabio.pavanello@cnrs.fr

  • Mots clés : Sciences pour l'ingénieur, Electronique et microélectronique - Optoélectronique, FMNT, IMEP-LaHc
  • Laboratoire : FMNT / IMEP-LaHc
  • Code CEA : IMEPLAHC-PHOTO-27-10-2023
  • Contact : fabio.pavanello@cnrs.fr

(pourvue) Système antennaire biosourcé reconfigurable sub-7 GHz à multiple sources pour la 5G et après 5G

Mail Sélection

Date de début : 02/10/2023

Offre n° IMEPLAHC-DHREAMS-18-04-2023

Offre de thèse
Système antennaire biosourcé reconfigurable sub-7 GHz
à multiple sources pour la 5G et après 5G

 

Contexte et objectif :
Le secteur des TIC a contribué à hauteur d’environ 3% des émissions totales de CO2 de 2010 à 2015 et ne cesse à augmenter [1]. Pour que soit soutenable la demande de l’augmentation du débit de transmission et la réduction de l’impact environnemental de circuits électroniques, le projet PERSEUS a été monté dans le cadre du programme PEPR-5G. Ce projet vit à mettre à profit la bande sub-7 GHz (700 MHz – 7 GHz) pour les applications 5G plus efficaces et plus écologiques.

Pour ce faire, plusieurs approches pourront être considérées pour “réduire, réutiliser, et recycler”. Des matériaux biosourcés [2] (tels que du papier [3][7], de l’encre conductrice chargée de nanocellulose [7], et du PLA (acide polylactique) chargé de fibres végétales [8]) pourront être utilisés pour réduire les besoins de ressources fossiles et rares. À la fin du cycle de vie, ces matériaux biosourcés pourront être recyclés ou décomposés. Des dispositifs reconfigurables ou modulables sont aussi intéressants pour les aspects développement durable.

Dans ce contexte, l’équipe DHREAMS du laboratoire IMEP-LaHC (UMR 5130) vise à développer un système antennaire reconfigurable à multiple sources utilisant des substrats biosourcés. Le schéma de multiple sources permet à la fois de reconfigurer le comportement de l’antenne (fréquence et rayonnement) et d’intégrer un réseau distribué de l’amplificateur de puissance pour augmenter l’efficacité énergétique [9][11].
Pour réduire encore les pertes en combinaison de puissance, les antennes à opération multiple seront étudiées pour “enlever” le circuit d’adaptation entre l’antenne et les composants actifs [12].

Plan de travail :
Pour ces objectifs, le ou la candidat(e) doit réaliser les tâches suivantes :

➢ Faire une bibliographie exhaustive pour avoir une vue globale sur les substrats biosourcés potentiels en tenant en compte de leurs propriétés physiques en RF, mécanique, et thermique.
➢ Proposer un (ou plusieurs) substrat(s) potentiel(e) pour le développement des circuits et systèmes en bande 5G (700 MHz – 7 GHz).
➢ Compléter cette bibliographie avec les antennes reconfigurables (et) à multiple sources.
➢ Concevoir et caractériser des antennes conventionnelles (à source unique) utilisant le(s) substrat(s) biosourcé(s) sélectionné(s) précédemment pour contrôler les sources d’erreurs et maîtriser les procédés de fabrication.
➢ Concevoir et caractériser l’antenne à multiple sources utilisant substrat biosourcé et évaluer la capacité de tenue en puissance en tenant compte de l’intégration des composants électroniques pour la reconfigurabilité.
➢ Concevoir et caractériser l’(es) antenne(s) reconfigurable(s) à multiple sources utilisant un substrat biosourcé.
➢ Concevoir et caractériser l’(es) antenne(s) active(s) avec un réseau distribué de l’amplificateur de puissance sans avoir les circuits d’adaptation.

Profil recherché :

➢ Niveau d’étude : Master 2R ou Ingénieur en électronique et Radiofréquence.
➢ Compétences :
• Connaissances requises sur l’électromagnétisme, antennes, et des composants RF.
• Connaissances appréciées sur les logiciels de simulation électromagnétique (tels que CST, HFSS, ADS) et les appareils de mesure radiofréquence (tels que VNA, analyseur de spectre).
• Une maîtrise de la langue anglaise sera appréciée
➢ Expériences : une expérience (stage, projet d’études, …) dans le domaine RF sera appréciée.
➢ Une motivation sur l’électronique durable sera un plus.

Laboratoire d’accueil :
Le ou la candidat(e) s’intégrera à l’équipe DHREAMS au laboratoire IMEP-LaHC (UMR 5130), 03 Parvis Louis Néel, 38016 Grenoble Cedex 1.

Encadrants :
Pr. Pascal XAVIER
Pr. Tan Phu VUONG,
MCF. Nhu Huan NGUYEN

Pour candidater :
Envoyez-nous votre CV et lettre de motivation AVANT LE 12 MAI 2023

Inscription et salaire :
Le ou la doctorant(e) s’inscrira à l’école doctorale EEATS et recevra une rémunération d’environ 2044,12€ / mois (BRUT).

Références :
[1] J. Malmodin and D. Lundén, “The Energy and Carbon Footprint of the Global ICT and E&M Sectors 2010–2015,” Sustainability, vol. 10, no. 9, p. 3027, Aug. 2018, doi: 10.3390/su10093027.

[2] https://www.ecologie.gouv.fr/materiaux-construction-biosources-et-geosources

[3] Ines Kharrat. Modélisation et réalisation d’un système de récupération d’énergie imprimé : caractérisation hyperfréquence des matériaux papiers utilisés. Optique / photonique. Université de Grenoble, 2014. Français. ffNNT : 2014GRENT106ff. fftel-01314122.

[4] Do Hanh Ngan Bui. Printed flexible antenna for energy harvesting. Optics / Photonic. Université Grenoble Alpes, 2017. English. ffNNT : 2017GREAT062ff. fftel-01721461f.

[5] Hong Phuong Phan. Design of 2D and 3D antennas on flexible materials. Optics / Photonic. Université Grenoble Alpes, 2018. English. ffNNT : 2018GREAT106ff. fftel-021388.

[6] Erika Vandelle. Exploration of antenna and passive beamforming techniques for wireless energy harvesting and transfer. Optics / Photonic. Université Grenoble Alpes, 2019. English. NNT : 2019GREAT060. tel-02905411.

[7] Maxime Wawrzyniak. Development of innovative and transparent radio frequency devices based on nanocelluloses silver nanowires hybrid system. Université Grenoble Alpes, soutenue en 2022.

[8] P. Xavier, G. Zakka El Nashef, E. Perrin, F. Jestin, D. Rauly, N. Corrao, et N. Chevalier, “Dispositifs hyperfréquences à faible impact environnemental,” Journées Nationales Microondes (JNM), Limoges, France, Juin 2022.

[9] S. Li, T. Chi, J. S. Park and H. Wang, “A multi-feed antenna for antenna-level power combining,” 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), Fajardo, PR, USA, 2016, pp. 1589-1590, doi: 10.1109/APS.2016.7696501.

[10] H. Wang et al., “Towards Energy-Efficient 5G Mm-Wave links: Exploiting broadband Mm-Wave doherty power amplifier and multi-feed antenna with direct on-antenna power combining,” 2017 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), Miami, FL, USA, 2017, pp. 30-37, doi: 10.1109/ NBCTM.2017.8112905.

[11] S. Li, T. Chi and H. Wang, “Multi-Feed Antenna and Electronics Co-Design: An E-Band Antenna- LNA Front End With On-Antenna Noise-Canceling and G
ₘ-Boosting,” in IEEE Journal of Solid-State Circuits, vol. 55, no. 12, pp. 3362-3375, Dec. 2020, doi: 10.1109/JSSC.2020.3024592.

[12] S. N. Nallandhigal and K. Wu, “Unified and Integrated Circuit Antenna in Front End—A Proof of Concept,” in IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 1, pp. 347-364, Jan. 2019, doi: 10.1109/TMTT.2018.2872962.

  • Mots clés : Sciences pour l'ingénieur, Electronique et microélectronique - Optoélectronique, FMNT, IMEP-LaHc
  • Laboratoire : FMNT / IMEP-LaHc
  • Code CEA : IMEPLAHC-DHREAMS-18-04-2023
  • Contact : nhu-huan.nguyen@grenoble-inp.fr
  • Merci de votre intérêt, mais cette offre de Thèses est déjà pourvue.

(pourvue) Photonique intégrée sur verre pour la génération de fréquences Térahertz

Mail Sélection

Date de début : 02/10/2023

Offre n° IMEPLAHC-PHOTO-18-04-2023

Sujet de thèse 2023
Photonique intégrée sur verre pour la génération de fréquences Térahertz

 

The thesis will focus on the development of co-integrated Glass DFB Lasers for THz generation and  the demonstration to high speed communications. Several advanced applications, such as next wireless  communication system (6G and beyond), spectroscopes and radars require high purity radio frequency  signals. These lasts are more and more difficult to generate as the signal frequency increases using  conventional electrical techniques. Solutions based on heterodyning of optical sources have  demonstrated to be the preferred way to produce frequencies higher than 100GHz (aka THz  frequencies).
We already demonstrated the potential of the ion exchanges platform for the generation of 300GHz communication signals, y integrating several lasers in a single glass chip. The intrinsic coherence of  those lasers, several orders of magnitude better than those based on other integrated technologies allow implementing advanced modulation formats such as QAM and OFDM to further improve the  transmission capabilities of THz communication systems.

The objective of this PhD is to enhance the performances our integrated glass chips to reach frequency  up to 600GHz. Different solutions have already been identified, like integrating distinct Bragg gratings in a single glass chip for example. The laser stability will also be improved through the insertion of
phase shifts in laser cavities.
Another objective is to integrate specific technologies to enhance the module: we will associate two  different chips in a single module for specific functions. One module will be dedicated to the laser  sources, and another module will consist of advanced Lithium Niobate modulators dedicated to optical  coherent communications. The multi-chip module will be integrated in a compact package, interfaced  with optical fibres and electrical DC and RF ports.
In order to qualify the modules and demonstrate their potential for high demanding applications such  as telecommunication, advanced characterization will be implemented. As an example, both spectral  and time domain characterisation will be analysed to study the laser frequency noise dynamic and  noise transfer to the THz signal during the heterodyning process. Detailed studies based on frequency  Allan variance will be used to qualify and determine the different contributions to laser linewidth.
Finally, the chips will be inserted in communication links using advanced modulation formats to  demonstrate the capabilities of the ion exchange platform for THz communications.

The PhD work will benefit from worldwide recognized know-how and facilities of the IMEP-LAHC  laboratory, including clean rooms access, and advanced characterizations set-ups. Some aspects of the  work will benefit from existing collaborations, for modulator chip, for advanced THz characterizations
and system demonstrations.

As the applicant will work in an interactive team and will be in direct contact with industrial and  academic partners, we are looking for someone willing to work in a collaborative environment. The  work requires experimental fabrication, characterization and analysis, but also strong theoretical  knowledge to understand the origin of the system perturbations and their impacts on the final  application. Consequently, we are looking for candidates having susceptibility for experimental work,  and strong will to develop their theoretical backgrounds in the following fields:
Laser Physics, High speed optical systems, Noise analysis.

Starting date: Oct. 2023
For more details, please contact:
Julien POËTTE
Lionel BASTARD
Jean-Emmanuel BROQUIN

  • Mots clés : Sciences pour l'ingénieur, Electronique et microélectronique - Optoélectronique, FMNT, IMEP-LaHc
  • Laboratoire : FMNT / IMEP-LaHc
  • Code CEA : IMEPLAHC-PHOTO-18-04-2023
  • Contact : julien.poette@grenoble-inp.fr
  • Merci de votre intérêt, mais cette offre de Thèses est déjà pourvue.

Développement de méthodes de caractérisation de matériaux et de modélisation de milieux complexes dans le domaine Térahertz (THz)

Mail Sélection

Date de début : 02/10/2023

Offre n° IMEPLAHC-PHOTO-14-04-2023

 

 

 

 

 

Sujet de thèse  2023-2024
Développement de méthodes de caractérisation de matériaux et de modélisation de milieux complexes dans le domaine Térahertz (THz)

1- Context and scientific issues
The terahertz (THz) domain is very promising for the detection of substances and materials [1], for security purposes [2], for non-destructive testing [3] but also for very high speed telecommunications (5 and 6G).
Thus, in these applications, as for example and more precisely for the construction of very high speed telecommunication systems involving frequencies in the millimeter range and above, it is necessary to have a perfect knowledge of the media in which the waves propagate and with which they are brought to interact.
Many materials have already been characterized and their characteristics (refractive index, absorption or otherwise considered dielectric permittivity) are now known on the spectral band of interest which typically ranges between 100 GHz and several THz. For example, common dielectric materials (paper, fabrics,
plastics…) are transparent to these waves [4].
However, the materials constituting the transmission channel are very often far from ideal, they can contain a variable moisture rate and they are mostly heterogeneous in composition and/or structure: mixtures of different materials, possibly structured (multilayered, porous, more or less rough), etc. It is therefore
necessary to take this complex structure into account this complex structure in the methods used to characterize them as well as in the model to predict their behavior. In fine, in fine, these studies will lead to the modeling of the entire transmission channel in order to optimize its performance, limits…

The objectives of the project are therefore:

  • to develop characterization methods specifically adapted to the complex materials of interest,
  • to characterize these materials under different temperature and humidity conditions and over a wide spectral range from sub-THz to several THz,
  • to propose theoretical models of these heterogeneous materials (scattering models [5], effective medium models [6], diffraction models [7]…),
    In addition, always with the aim of developing new methods of characterization, it will be necessary to implement an experiment of type optical pump – THz probe to study the dynamic and/or nonlinear properties [11] of certain materials which can be used to manufacture devices of emission and detection of THz wave, or of shaping of THz beams.

The IMEP-LAHC laboratory is internationally recognized for its activities in the field of THz characterization of materials and devices developed since the 1990s [8-10]. The project will rely on the THz characterization facilities of the PLATERA platform of the IMEP-LAHC laboratory  and on its competences in terms of development of characterization methods for materials and devices. More precisely, the Platera platform has the following systems: 2 THz-TDS spectrometers (Time Domain Spectroscopy) and imaging systems, 1 CW (Continuous Waves) spectrometer, 1 multispectral « video rate » imaging system based
on an electronic multiplication chain (82 GHz- 1. 1 THz) associated with a THz camera, a THz optical pump- probe experiment using an amplified femtosecond laser and an OPA (Optical Parametric Amplifier) allowing to tune the wavelength of the optical pump beam between 280 nm and 2μm [11].

2- Goals and methods
The objective is to characterize the « optical » properties of samples heterogeneous in composition and structure, i.e. made of materials of different natures that can be mixtures, laminar structures, porous, more or less rough etc. …. The extraction of the properties of these complex materials (absorbing, scattering,
dispersive) which constitute the environment of the transmission channel require the development of adapted measurement protocols, the modeling of coupled phenomena (absorption, diffusion etc…) and the deployment of a numerical solution allowing to obtain the properties of materials of the mixture from the
measurements.
We will also be interested in the effects of humidity, especially for porous materials found in buildings such as construction materials and thermal and sound insulation (gypsum boards, wood boards – OSB, glass wool, wood wool etc.).
Beyond the materials constituting the transmission channel, it will also be necessary to characterize certain materials constituting the transmitters and receivers or certain passive components used in a transmission system such as lenses, filters etc…

The thesis work will therefore include 6 main tasks:
– Task 1: Sub-THz and THz characterization benches
In the context of the study, it is necessary to acquire an atmospheric chamber allowing to control the humidity rate on an important range (0% -> 90%) and if necessary, the temperature of the sample. It will be necessary to install/construct this chamber on the basis of already operational experiments (TDS
Spectrometers).

– Task 2: Effective media – mixtures
For materials composed of mixtures whose constituent elements or inclusions exhibit dimensions much smaller than the considered wavelength, it will be necessary to validate the possibility of using effective media models. For hydrophilic or porous materials, elements such as water and air will have to be
systematically taken into account.

– Task 3: Diffusing media
As soon as the aggregates or inclusions are sufficiently large compared to the wavelengths, the use of scattering models will be necessary to predict the behavior of materials, particularly in terms of losses. Thus,
it will be necessary to validate the type of scattering phenomena (Mie, Rayleigh…) involved and this the most
appropriate model.

– Task 4: Diffractive media
Sometimes, structured materials possibly periodically may be encountered (fabrics for example [7]), we had to verify the occurrence of diffraction phenomena and for the simplest structures (1D) to verify the validity of « standard » models, or if needed to use numerical methods (Finite Elements) for 2D/3D structures.

– Task 5: Study in real conditions
In addition, and transversally to the previous tasks, it will be necessary to study the effects of humidity andeven temperature on the behavior of materials of interest. In particular, the humidity rate should a priori be one of the most important parameters; the materials will thus be studied over a wide range of humidity rates from a few % to more than 90%.

Task 6: Characterization of dynamic and non-linear properties of materials
In addition, still with the aim of developing new methods of characterization, we propose to implement an experiment of the type optical pump – THz probe [11] which will make it possible to characterize the dynamic effects in certain semiconductor or nonlinear materials possibly usable in devices of emission and detectionor shaping of the THz beams.

3- References
[1] R. Miles, X.-C. Zhang, H. Eisele, A. Krotkus, « Terahertz Frequency Detection and Identification of Materials and Objects », NATO Science for Peace and Security Series B: Physics and Biophysics, Springer Nature (2021)
[2] A.U. Sokolnikov, « THz Identification for Defense and Security Purposes », World Scientific (2013
[3] D. Nüßler, J. Jonuscheit, « Terahertz based non-destructive testing (NDT) – Making the invisible visible », Oldenbourg Wissenschaftsverlag April 7 (2020) – DOI 10.1515/teme-2019-0100
[4] E. Hérault, F. Garet, J.-L. Coutaz, “On the possibility of identifying substances by remote active THz spectroscopy”, IEEE Transactions on Terahertz Science and Technology, 6, 1, 12-19 (january 2016)
[5] F. Garet, M. Hofman, J. Meilhan, F. Simoens, J.-L. Coutaz, “Evidence of Mie scattering at terahertz frequencies inpowder materials”, App. Phys. Lett., 105 (3), 031106 (2014) – doi: 10.1063/1.4890732.
[6] M. Scheller, S. Wietzke, C. Jansen, and M. Koch, ‘Modelling heterogeneous dielectric mixtures in the terahertz regime: a quasi-static effective medium theory’, J. Phys. Appl. Phys., vol. 42, no. 6, 2009
[7] Emilie Hérault, Maxence Hofman, F. Garet and Jean-Louis Coutaz, “Observation of terahertz beam diffraction byfabrics”, Opt. Lett., 38, 15, (sept. 2013) – 10.1063/1.4821627.
[8] L. Duvillaret, F. Garet, J.L. Coutaz, « A Reliable method for extraction of Material Parameters in THz Time-DomainSpectroscopy », IEEE JSTQE, 2, pp. 739-746 (1996) – citations  1000.
[9] M. Bernier, F. Garet, J.-L. Coutaz, H. Minamide, A. Sato, “Accurate Characterization of Resonant Samples in theTerahertz Regime Through a Technique Combining Time-Domain Spectroscopy and Kramers–Kronig Analysis”, IEEETransactions on Terahertz Science and Technology, Volume: 6, Issue: 3, May 2016
[10] Coutaz J. –L. Garet F., and V. P. Wallace, « Principles of Terahertz Time-domain Spectroscopy ». Ed. Pan Stanford Publishing, (décembre 2018) – ISBN 9789814774567
[11] D. Zhai, E. Hérault, F. Garet, J.-L. Coutaz, Ci-Ling Pan “THz generation in GaSe crystals pumped with laser photonenergy below and around the bandgap“, Appl. Phys. Lett. 122, 011103 (2023); https://doi.org/10.1063/5.0128292

3- Candidates requirements
Education level: Master or equivalent degree in electrical or material engineering or physics.
Expertise: Microwave engineering, Physics of semiconductors, Numerical modeling (HFSS), Instrumentation
are appreciated.
Language: English, French (not required).

4- Other information
– PhD. duration: 36 months.
Gross Salary: 2200 € /month (up to 2400 € including teaching possibility up to 64h/year)
– Benefits: French social security system, funding for conferences, access to the laboratory and its large instrumentation hardware resources (https://www.platera.tech/)
Location: IMEP-LAHC Laboratory, University Savoie Mont-Blanc, Rue Lac de la Thuiles, 73370 Le Bourget du
Lac
Contact: Frederic GARET – garet@univ-smb.fr

  • Mots clés : FMNT, IMEP-LaHc
  • Laboratoire : FMNT / IMEP-LaHc
  • Code CEA : IMEPLAHC-PHOTO-14-04-2023
  • Contact : frederic.garet@univ-smb.fr
En naviguant sur notre site, vous acceptez que des cookies soient utilisés pour vous proposer des contenus et services adaptés à vos centres d’intérêts. En savoir plus
X