Epitaxie quasi – van der Waals de CdTe sur matériaux 2D

Publié le : 24 octobre 2018

Les matériaux 2D font l’objet d’une intense activité de recherche de fait de leurs propriétés physiques exceptionnelles liées à leur structure de bande particulière, elle-même héritée de leur arrangement cristallin particulier. En effet, ces matériaux présentent des liaisons fortes dans le plan des couches uniquement, et une interaction faible de type van der Waals hors du plan, d’où leur dénomination 2D qui désigne un matériau organisé en feuillets bidimensionnels. L’épitaxie de matériaux 2D sur des semiconducteurs traditionnels 3D peut donc en principe avoir lieu sans contrainte d’accord de paramètres de mailles entre les deux matériaux. L’inverse est également vrai lorsque l’on considère la croissance d’un matériau 3D sur un 2D. Le travail de recherche proposé dans ce stage et qui pourrait être poursuivi pas une thèse consiste justement à étudier ces nouveaux systèmes épitaxiés 2D/3D en proposant d’élaborer sur la base de ces cristaux 2D des couches « strain-free » de CdTe ou HgCdTe qui sont des matériaux à fortes applications dans les domaines photovoltaique solaire et détection infrarouge. La technique de croissance privilégiée est l’épitaxie par jets moléculaires, au CEA/INAC pour le 2D et au CEA/Leti pour le matériau 3D, car elle permet le meilleur contrôle de l’interface entre ces matériaux. Les épitaxies 3D(CdTe)/2D et 2D/3D(HgCdTe) seront dans un premier temps étudiées indépendamment avec pour objectif de réaliser in fine un empilement 3D(CdTe)/2D/3D(HgCdTe) dans lequel le 3D(CdTe) sera utilisé pour induire, à travers le matériau 2D, la nucléation du HgCdTe selon la bonne structure/orientation cristalline. L’interposition d’un cristal 2D offre ainsi la possibilité d’envisager de nouvelles hétérostructures. En outre, elle permet également la possibilité de transférer la couche sur des substrats divers (Si, GaAs…); solution est très avantageuse pour l’intégration et le design de nouveaux dispositifs optoélectroniques. Le cadre de l’étude est également enrichi par la proximité immédiate des équipes de la plateforme nano-caractérisation (PFNC) où des équipements de dernière génération sont à disposition pour révéler la nature chimique et la structure cristallographique des empilements réalisés.
Pour candidater, merci d’envoyer CV+LM à philippe.ballet@cea.fr

En naviguant sur notre site, vous acceptez que des cookies soient utilisés pour vous proposer des contenus et services adaptés à vos centres d’intérêts. En savoir plus
X