Communications haut débit filaires et optiques à températures cryogéniques pour l’ordinateur quantique

Publié le : 12 mars 2020

La promesse de l’ordinateur quantique universel robuste aux erreurs de relaxation et de phase des qubits pose un problème majeur de passage à l’échelle, avec des milliers voire des millions de qubits à contrôler et à mesurer pour réaliser les codes correcteurs d’erreur nécessaires. L’information à échanger entre les dispositifs quantiques à température cryogénique et les équipements d’instrumentation à température ambiante nécessite des débits pouvant dépasser 1 Terabit/s, à réaliser dans un budget de puissance restreint pour limiter l’auto-échauffement. Cette thèse a pour objectif de proposer et réaliser des architectures et circuits de communication à haut débit efficaces en énergie, en s’appuyant sur une transmission en fibre optique entre le cryostat et la température ambiante.

Les innovations visées portent sur la conception de circuits cryo-électroniques CMOS utilisant la technologie FDSOI pour réaliser des fonctions de SerDes, récupération d’horloge et pilotes de modulateurs et récepteurs en photonique sur silicium fortement couplés aux dispositifs quantiques.

Les travaux s’intégreront dans un objectif de développement d’une architecture d’accélérateur de calcul quantique à base de spins d’électrons dans le silicium, développée par une équipe pluridisciplinaire de physiciens, technologues, concepteurs en microélectronique et d’architectes et informaticiens.

En naviguant sur notre site, vous acceptez que des cookies soient utilisés pour vous proposer des contenus et services adaptés à vos centres d’intérêts. En savoir plus
X