Imagerie sans lentille et intelligence artificielle pour un diagnostic rapide des infections

Publié le : 12 mars 2020

L’objectif de la thèse est de développer une technologie portable d’identification des pathogènes. En effet, dans un contexte d’extension des déserts médicaux et de recrudescence des infections antibiorésistantes, il est urgent de développer des techniques innovantes pour le diagnostic rapide des infections en milieu isolé. Parmi les techniques optiques d’identification des pathogènes, les méthodes d’imagerie sans lentille occupent une place particulière car elles sont les seules à l’heure actuelle à pouvoir proposer une caractérisation simultanée d’un grand nombre de colonies, le tout avec une technologie bas coût, portable et peu énergivore. L’objectif de la thèse est d’explorer les potentialités de l’imagerie sans lentille associée à des algorithmes d’intelligence artificielle pour identifier rapidement les colonies bactériennes présentes dans un liquide biologique. La thèse visera à optimiser le dimensionnement du système imageur (sources, capteurs) et à étudier des algorithmes de traitement d’images et d’apprentissage machine nécessaires pour l’identification des colonies. Deux cas d’applications cliniques seront étudiés.

En naviguant sur notre site, vous acceptez que des cookies soient utilisés pour vous proposer des contenus et services adaptés à vos centres d’intérêts. En savoir plus
X