Offres de Thèses, Stages et Post-docs

nombre d'offres : 41

Synthèses et études de matériaux organiques chiraux pour le transport de charges dans les semi-conducteurs organiques

Mail Sélection

Date de début : 01/10/2021

Offre n° SL-DRT-21-0395

La détection et la manipulation de l’état de polarisation de la lumière connaît actuellement un engouement scientifique important, du fait notamment de l’intérêt d’utiliser une lumière circulairement polarisée (LCP) dans de nombreux domaines d’importance sociétale tels que les technologies d’affichage, la transmission d’informations, la cryptographie, l’imagerie bio-médicale ou encore la détection de molécules chirales d’intérêt pharmaceutique. De part leur capacité à interagir spécifiquement avec une LCP et à moduler sa polarisation, les matériaux moléculaires chiraux s’imposent comme un élément de choix pour explorer ces applications innovantes et envisager de nouvelles potentialités en électronique organique. De plus, la propriété unique des molécules chirales à induire une sélectivité de spin électronique dans la conduction de courant électrique (CISS effect pour Chiral Induced Spin Selectivity) ouvre également des opportunités dans le domaine de la spintronique organique. En conséquence, la synthèse de semi-conducteurs chiraux pi conjugués innovants, présentant une modulation aisée de leurs propriétés physico-chimiques et l’intégration de ces matériaux dans des dispositifs optoélectroniques de type OLEDs, OPDs ou OFETs présente un intérêt aussi bien fondamental qu’applicatif.

Le projet de thèse se fera en collaboration avec un laboratoire de chimie du CNRS et le laboratoire du CEA/LETI le LCEM spécalisé dans les semi-conducteurs organiques. L’étudiant de thèse aura pour objectifs de synthétiser des nouveaux transporteurs de charges organiques chiraux et de caractériser leurs propriétés photophysiques (d’absorption et d’émission) et opto-électronique. Les molécules les plus prometteuses seront intégrées dans des dispositifs OLEDs et OPDs.

La partie synthèse et caractérisation photophysiques (spectromètre de dichroisme circulaire, spectromètre de luminescence non polarisée et circulairement polarisée, RPE, …) seront réalisées au laboratoire de Chimie du CNRS (Institut des Sciences Chimiques de Rennes). L’intégration des molécules dans des dispositifs OLEDs et OPDs se fera au sein du laboratoire LCEM du CEA Grenoble où se trouve les équipements de dépôt (chambre PVD pour matériaux organiques) et les moyens de caractérisation opto-électronique (IVL, C(V), TLM, Photocourant, effet hall, …).

  • Mots clés : Condensed matter physics, chemistry & nanosciences, Engineering sciences, Materials and applications, Ultra-divided matter, Physical sciences for materials, DOPT, Leti
  • Laboratoire : DOPT / Leti
  • Code CEA : SL-DRT-21-0395
  • Contact : benoit.racine@cea.fr

Simulation et optimization d’une photodiode à avalanche (SPAD) couplée à un absorber Germanium

Mail Sélection

Date de début : 01/01/2021

Offre n° SL-DRT-21-0477

Les dispositifs optoélectroniques avancés tels que la diode à avalanche à photon unique (SPAD) sont maintenant largement utilisés dans les domaines de l’imagerie 3D, de l’assistance de caméra, de la télémétrie laser et de la proximité. La prochaine génération de SPAD sera consacrée à la télémétrie 3D en temps de vol et à la détection rapide des mouvements, notamment pour les LiDaR utilisés dans les voitures à conduite autonome.

Le travail de thèse consistera à développer et exploiter des simulateurs développé à ST-Microelectronics pour les dispositifs optoélectroniques et plus spécifiquement, le SPAD à absorption séparée Ge. Dans ce type de capteurs, la lumière infrarouge est absorbée dans le germanium et les porteurs photogénérés sont transportés dans la zone d’avalanche en silicium pour l’amplification du signal. Une connaissance approfondie du transport entre les deux matériaux est fondamentale pour l’optimisation de l’appareil. Cela se fera par simulation et étalonnages des modèles.

Tout d’abord, des simulations de processus d’implantation de dopage, mais aussi de déformation résiduelle dans la couche épitaxiale de Ge seront utilisées pour extraire des profils de dopage réalistes à insérer dans le code Monte Carlo (MC).

Deuxièmement, en utilisant la simulation 3D de particules MC pour résoudre l’équation de transport de Boltzmann, le comportement temporel de différentes conceptions de dispositifs SPAD basés sur le Si et le Ge sera analysé statistiquement afin de réduire la ‘gigue’ et d’améliorer la probabilité de détection des photons. La technique MC est un outil unique pour analyser les trajectoires de particules uniques ainsi que l’évolution temporelle des courants et des tensions aux bornes du dispositif.

  • Mots clés : Condensed matter physics, chemistry & nanosciences, Solid state physics, surfaces and interfaces, DOPT, Leti
  • Laboratoire : DOPT / Leti
  • Code CEA : SL-DRT-21-0477
  • Contact :

Imagerie sans lentille et intelligence artificielle pour un diagnostic rapide des infections

Mail Sélection

Date de début : 01/10/2020

Offre n° SL-DRT-21-0380

L’objectif de la thèse est de développer une technologie portable d’identification des pathogènes. En effet, dans un contexte d’extension des déserts médicaux et de recrudescence des infections antibiorésistantes, il est urgent de développer des techniques innovantes pour le diagnostic rapide des infections en milieu isolé. Parmi les techniques optiques d’identification des pathogènes, les méthodes d’imagerie sans lentille occupent une place particulière car elles sont les seules à l’heure actuelle à pouvoir proposer une caractérisation simultanée d’un grand nombre de colonies, le tout avec une technologie bas coût, portable et peu énergivore. L’objectif de la thèse est d’explorer les potentialités de l’imagerie sans lentille associée à des algorithmes d’intelligence artificielle pour identifier rapidement les colonies bactériennes présentes dans un liquide biologique. La thèse visera à optimiser le dimensionnement du système imageur (sources, capteurs) et à étudier des algorithmes de traitement d’images et d’apprentissage machine nécessaires pour l’identification des colonies. Deux cas d’applications cliniques seront étudiés.

  • Mots clés : Life Sciences, Technological challenges, Artificial intelligence & Data intelligence, Biotechnologies,nanobiology, DTBS, Leti
  • Laboratoire : DTBS / Leti
  • Code CEA : SL-DRT-21-0380
  • Contact : caroline.paulus@cea.fr

Sources de temps optomécaniques

Mail Sélection

Date de début : 01/09/2021

Offre n° SL-DRT-21-0351

Les sources de temps (reference oscillators) sont des composants qui génèrent un signal à une fréquence très précise, habituellement à partir de la vibration d’un élément mécanique en résonance. Ces dispositifs sont aujourd’hui utilisés dans la grande majorité des circuits électroniques : un smartphone ou tablette, par exemple, peut contenir jusqu’à sept sources de temps. Cependant, l’arrivée de nouvelles technologies comme la 5G, les systèmes de conduite autonome dans les voitures ou bien certaines applications aérospatiales nécessitent des performances qui ne sont pas atteignables avec les technologies commercialement disponibles. Ainsi, le développement de sources de temps constituées de résonateurs micromécaniques (MEMS) en silicium à haute fréquence (1 – 5 GHz aujourd’hui, plusieurs dizaines de GHz dans le futur) constitue une rupture technologique prometteuse.

Cependant, la réalisation de tels dispositifs performants dans la gamme du GHz reste un défi, principalement dû à la difficulté de détecter avec précision des vibrations extrêmement faibles. Il s’agit donc d’utiliser ici une transduction optomécanique sur le même principe que les détecteurs d’ondes gravitationnelles, mais intégrée à l’échelle nanométrique ayant des sensibilités de détection extrêmes. Cette technique maintenant bien maîtrisée au Leti pourra être alliée à l’utilisation de matériaux piezoélectriques pour augmenter le signal disponible : des preuves de principe de ce concept ont été réalisées très récemment pour la recherche fondamentale mais il n’a jamais été appliquée jusqu’ici. Cette technologie semble pourtant le candidat idéal pour réaliser l’objectif de la thèse: l’implémentation d’une source de temps MEMS basée sur cette technologie optomécanique de rupture. La thèse se déroulera au laboratoire de micro-capteurs du CEA-Leti, en collaboration avec le laboratoire de composants radiofréquences. Le Leti est un pionnier dans le domaine de l’optomécanique et des matériaux piezoélectriques intégrés sur puce.

Le doctorant travaillera en collaboration avec les équipes du Leti pour concevoir et dessiner le résonateur et son procédé de fabrication, sur la base de modèles analytiques et de simulations éléments finis. Ensuite, elle/il aura la possibilité de fabriquer ses dispositifs en salle blanche, et de les tester dans les laboratoires du Leti, afin de réaliser pour la première fois un tel démonstrateur.

Le/la candidat/e sera en possession d’un Master 2/ Ecole d’ingénieur généraliste ou physique appliquée ; formation en nanotechnologies, optique ou télécom, physique des semi-conducteurs.

  • Mots clés : Engineering sciences, Technological challenges, Communication networks, IOT, radiofrequencies and antennas, Materials and applications, DCOS, Leti
  • Laboratoire : DCOS / Leti
  • Code CEA : SL-DRT-21-0351
  • Contact : marc.sansaperna@cea.fr

Neurones oscillants pour le calcul d’optimisation et la mémoire associative

Mail Sélection

Date de début : 01/10/2021

Offre n° SL-DRT-21-0393

Les réseaux de Hopfield sont des réseaux de neurones récurrents qui permettent de réaliser des fonctions de mémoire associative. En soumettant leurs éléments à des fluctuations ajustables, ces réseaux peuvent également être adaptés à la résolution efficace de problèmes d’optimisation combinatoire NP-difficiles. De tels problèmes, dont la résolution exacte en temps polynomial est hors de portée de machines de Turing déterministes, trouvent des applications dans des domaines tels que les opérations logistiques, le design de circuits (e.g. placement-routage), le diagnostic médical, la gestion de réseaux intelligents (e.g. smart grid), la stratégie de management etc.

Le sujet proposé s’inscrit dans le contexte de la recherche d’accélérateurs hardware pour l’intelligence artificielle. L’approche considérée en particulier porte sur le choix d’oscillateurs verrouillés en phase par injection (ILO: Injection-Locked Oscillators) pour réaliser la fonction du neurone. L’objectif sera la conception, la fabrication et la démonstration de réseaux de neurones binaires couplés par des poids synaptiques ajustables pour réaliser des fonctions de mémoire associative (ex: reconnaissance de forme) ou d’optimisation combinatoire (ex: coloration de graphe, partitionnement maximal,…).

  • Mots clés : Engineering sciences, Technological challenges, Artificial intelligence & Data intelligence, Electronics and microelectronics - Optoelectronics, DCOS, Leti
  • Laboratoire : DCOS / Leti
  • Code CEA : SL-DRT-21-0393
  • Contact : louis.hutin@cea.fr
En naviguant sur notre site, vous acceptez que des cookies soient utilisés pour vous proposer des contenus et services adaptés à vos centres d’intérêts. En savoir plus
X