Offres de Thèses, Stages et Post-docs

nombre d'offres : 122

Méthodes alternatives de détection dynamique pour une nouvelle génération des capteurs biochimiques de type ISFET en graphene

Mail Sélection

Date de début : 01/10/2024

Offre n° CROMA-CMNE-31-05-2024

Alternative methods based on dynamic detection  for a new generation of ISFET-like biosensors in graphene

Deadline for application: 18th of June 2024, beginning of contract: 1st of Oct. 2024

 

Place:
CROMA (Minatec) and Néel Institut, Grenoble (France)

Advisors:
Irina Ionica (Associate Professor Grenoble INP),
Cécile Delacourt (CNRS rechercher, Néel Institut),

Context and objectives:
This thesis is placed in the context of biochemical detection with ISFETs (Ion Sensing Field Effect Transistors), for which
the current which passes through the transistor channel is modulated by the presence of the charges to be detected
in its proximity. In the majority of cases, detection is done in real time by monitoring the drain-source current of the transistor channel.
Quantitative measurement could be done by calibrating the drain current as a function of the gate voltage of the transistor relative to the load to be detected. This method which has already been used for many demonstrators and
applications, uses the monitoring of a quantity quasi-static (e.g. the threshold voltage of the transistor), which non-discriminatorily encompasses all type of charge contained in the solution and sufficiently close to the channel (ions, fixed charges adsorbed on the surface of the device, interface states etc).
Unfortunately, in a “non-laboratory” application, a solution does not only contain the element we wish to detect, but many others and it would be important to identify typical electrical responses associated with the constituents. Dynamic approaches, such as non-equilibrium potential or low-frequency noise, are promising because they offer, for example, the possibility of searching for specific signatures depending on the measurement frequencies.

The objective of this project is therefore not to show another demonstrator which would improve one or several
figures of merit for a given application, but rather to explore dynamic detection alternatives with an ISFET, to
study/identify the mechanisms that are responsible for the particular electrical responses of the sensor. At
CROMA, we showed that the out of equilibrium body-potential response in device fabricated on silicon-on
insulator (SOI) 1 and due to the presence of Schottky barriers at the contacts2 can be used for sensing3.
The aim of this thesis is first to implement similar methods for graphene field effect transistors and benchmark
the dynamic detection with the quasi-static and more conventional approach. At Neel, we have demonstrated
the ability to fabricate array of GFETs that offers many suitable properties for sensing living matters4 and
biochemical compounds5. Sensors manufactured on graphene will benefit from the flexibility of the technology
in order to study a wide range of options to understand the mechanisms involved and to optimize the sensors.
Modelling and simulation components will elegantly complete the project for understanding of the phenomena
and will provide keys for the optimization of future sensors.

Work do be done:
The PhD student will develop the complete chain, from device fabrication, electrical measurements in equilibrium and dynamic conditions, sensing layer and surface functionalization for specific detection applications, modeling and simulation, allowing the comprehension of physical phenomena involved
and the optimization for the sensor. To remain more generic at first, ionic solutions close to those used in cell culture media with compositions simplified (e.g.: a single type of ion) and variable concentrations will make it possible to evaluate the mechanisms and detection improvements with dynamic methods (nonequilibrium potential and/or low frequency noise). More pragmatic applications will be explored in the second half of the thesis (e.g. neuronal sensing).

1M. Alepidis, A. Bouchard, C. Delacour, M. Bawedin and I. Ionica, « Out-of-Equilibrium Body Potential Measurement on Silicon-on-Insulator
With Deposited Metal Contacts, » in IEEE Transactions on Electron Devices, vol. 67, no. 11, pp. 4582-4586, 2020
2M. Alepidis, G. Ghibaudo, M. Bawedin & I. Ionica, Origin of the Out-of-Equilibrium Body Potential In Silicon on Insulator Devices With
Metal Contacts. IEEE Electron Device Letters, 42(12), 1834-1837, 2021
3M. Alepidis, A. Bouchard, C. Delacour, M. Bawedin, & I. Ionica, Novel pH sensor based on out-of-equilibrium body potential monitored in
silicon on insulator with metal contacts. In ECS Meeting Abstracts (No. 59, p. 1589). IOP Publishing, 2021
4Dupuit, V., Terral, O., Bres, G., Claudel, A., Fernandez, B., Briançon-Marjollet, A., & Delacour, C. (2022). A multifunctional hybrid graphene
and microfluidic platform to interface topological neuron networks. Advanced Functional Materials, 32(49), 2207001.
5Terral, O., Audic, G., Claudel, A., Magnat, J., Dupont, A., Moreau, C. J., & Delacour, C. (2024). Graphene field-effect transistors for sensing
ion-channel coupled receptors: towards biohybrid nanoelectronics for chemical detection. arXiv preprint arXiv:2402.04378.

Knowledge and skills required:
The candidate must have a solid knowledge of physics of semiconductors and devices. Clean-room fabrication, electronics of measurement systems, notion of chemical physics, surface physics or electrochemistry would be appreciated to better understand the interaction at the interface with the top gate liquids. The candidate is expected to enjoy experimental work and the development of adapted measurement protocols.
Scientific curiosity, motivation, creativity, tenacity are mandatory qualities in order to take full advantage of the scientific environment of this thesis and to gain excellent expertise for his/her future career. The topic is in the field of applied physics, but close to the fundamental physics, as well as to the industrial world. After the PhD, the candidate will easily adapt to both academic and industrial research environments.

The candidate must have a very good academic record, with high grades.
For the application, send your CV, motivation l

  • Mots clés : Sciences pour l'ingénieur, Electronique et microélectronique - Optoélectronique, FMNT, IMEP-LaHc
  • Laboratoire : FMNT / IMEP-LaHc
  • Code CEA : CROMA-CMNE-31-05-2024
  • Contact : irina.ionica@grenoble-inp.fr

Simulation, fabrication et caractérisation de transducteurs piézoélectriques transparents à base de nanofils de ZnO

Mail Sélection

Date de début : 01/10/2024

Offre n° CROMA-CMNE-28-05-2024

Simulation, fabrication et caractérisation de transducteurs piézoélectriques transparents à base de nanofils de ZnO  

 

Sujet détaillé :

Les dispositifs piézoélectriques suscitent un intérêt croissant en tant que micro-source d’énergie en récoltant l’énergie mécanique ambiante, et en tant que capteurs via l’effet piézoélectrique direct. Dans ce contexte, les matériaux semi-conducteurs sous forme de nanofils constituent un élément de base prometteur pour la fabrication de dispositifs innovants. Les nanofils présentent généralement un diamètre de plusieurs dizaines de nanomètres et une longueur d’environ un micromètre. Grâce à cette géométrie, ils présentent généralement une excellente qualité cristalline et bénéficient de propriétés physiques remarquables liées à leur rapport surface/volume élevé. L’oxyde de zinc (ZnO), semi-conducteur biocompatible composé d’éléments abondants, présente notamment de nombreux atouts et peut être fabriqué sous forme de nanofils par un grand nombre de techniques de dépôt. Grâce à sa structure cristalline wurtzite, les nanofils de ZnO se développent le long de l’axe c piézoélectrique. Les réseaux de nanofils de ZnO alignés verticalement sont donc sensibles aux contraintes mécaniques et sont susceptibles d’être intégrés dans des nanocomposites piézoélectriques visant soit à détecter des contraintes mécaniques (par exemple, les lecteurs d’empreintes digitales), soit à récolter avec une bonne efficacité l’énergie mécanique dans l’environnement et donc à jouer le rôle d’une micro-source d’énergie.

L’objectif de cette thèse de doctorat est d’explorer théoriquement et expérimentalement l’amélioration des performances des réseaux à haute densité de nanofils de ZnO de taille ultime sur un substrat transparent (par exemple le verre) recouvert d’une électrode conductrice transparente (AZO, etc.). Des nanofils de ZnO de dimensions et de propriétés contrôlées (états de surface, dopage) seront développés à l’aide d’une technique de dépôt chimique à faible coût et à basse température, ayant un faible impact sur l’environnement et un potentiel industriel élevé. L’intégration dans des dispositifs sera réalisée sur la base du savoir-faire du consortium de laboratoires. Des techniques de caractérisation complémentaires avancées seront utilisées au niveau des dispositifs et des nanofils : des montages fait maison seront utilisés au niveau des dispositifs. Des plates-formes AFM complémentaires (SSRM, SCM, TUNA, SMIM, etc.) seront utilisées pour caractériser les nanofils individuels. Toutes ces données expérimentales (géométrie, dopage, états de surface) nous aideront à construire et à valider une plateforme de simulation à la fois au niveau du nanofil unique et du dispositif. La plateforme de simulation fournira des directives d’optimisation pour les futurs capteurs et dispositifs de récupération d’énergie.

 

Références:

  1. M. Parmar et al. Nano Energy 56 859-867 (2019). DOI: ttps://doi.org/10.1016/j.nanoen.2018.11.088
  2. S. Lee et al. Adv. Funct. Mater. 24 1163-1168 (2014). DOI: https://doi-org.gaelnomade-2.grenet.fr/10.1002/adfm.201301971
  3. J. Villafuerte et al, Nano Energy 114 108599 (2023), https://www.sciencedirect.com/science/article/abs/pii/S2211285523004366
  4. T. Jalabert et al. Nanotechnology 34 115402 (2023). DOI 10.1088/1361-6528/acac35
  5. R. Tao et al., Adv. Electron. Mater. 4(1) 1700299 (2018). DOI: 10.1002/aelm.20170029
  6. A. Lopez et al, Nanomaterials 11(4) 941 (2021). https://doi.org/10.3390/nano11040941
  7. A. Lopez et al., Journal of Physics D: Applied Physics 56 125301 (2023). DOI 10.1088/1361-6463/acbc86
  8. C. Lausecker et al. Inorganic Chemistry 60 (3) 1612-1623 (2021) https://doi-org.sid2nomade-2.grenet.fr/10.1021/acs.inorgchem.0c03086
  9. Q. C. Bui et al., ACS Appl. Mater. Interfaces 12 (26) 29583–29593 (2020) https://doi-org.sid2nomade-1.grenet.fr/10.1021/acsami.0c04112
  10. M. Manrique et al., Energy Technol. 2301381 (2024), https://onlinelibrary.wiley.com/doi/10.1002/ente.202301381

 

Localisation

Le candidat travaillera dans l’équipe Micro Nano Electronics Devices (CMNE) du Centre de radiofréquences, d’optique et de micro-nanoélectronique des Alpes (CROMA), dans l’équipe Nanomatériaux et Hétérostructures Avancées (NanoMAT) du Laboratoire de Génie Physique et Matériaux (LMGP), dans l’équipe PROSPECT du LTM et dans l’équipe Plateforme de Nanocaractérisation (PFNC) du CEA-LETI.

Liens internet:
https://croma.grenoble-inp.fr/,
http://www.lmgp.grenoble-inp.fr/ ,
https://ltm.univ-grenoble-alpes.fr/,
https://ltm.univ-grenoble-alpes.fr/research,
https://www.leti-cea.fr/cea-tech/leti/Pages/recherche-appliquee/infrastructures-de-recherche/plateforme-nanocaracterisation.aspx

 

Profil et compétences requises :

Le (la) candidat (e) doit être un étudiant en école d’ingénieur ou en Master 2 dans les domaines de l’électronique, des nanosciences et/ou de la physique des semi-conducteurs. Il est souhaitable que le candidat ait des connaissances dans un ou plusieurs de ces domaines : physique des semi-conducteurs, simulation par éléments finis, microscopie à force atomique (AFM), techniques de salle blanche et caractérisations associées (SEM, etc.). Les notes et le rang obtenus en licence et surtout en master constituent un critère de sélection très important pour l’école doctorale. Des compétences spécifiques en matière de travail en équipe et d’expression orale et écrite en anglais seront appréciées. Nous recherchons des candidats dynamiques et très motivés.

Financement de la thèse de doctorat: Le financement est disponible via le LABEX Microélectronique (2024 – 2027) regroupant le CROMA, le LMGP, le LTM, et le CEA-LETI dans la région grenobloise..

 

Contacts

Dr. Gustavo ARDILA gustavo.ardila@univ-grenoble-alpes.fr Tel : 04.56.52.95.32

Dr. Vincent CONSONNI vincent.consonni@grenoble-inp.fr Tel : 04.56.52.93.58

Dr. Bassem SALEM bassem.salem@cea.fr Tel : 04.38.78.24.55

Dr. Gwenael LE RHUN gwenael.le-rhun@cea.fr Tel : 04.38.78.12.29

  • Mots clés : Sciences pour l'ingénieur, Electronique et microélectronique - Optoélectronique, FMNT, IMEP-LaHc, Leti, LMGP, LTM
  • Laboratoire : FMNT / IMEP-LaHc / Leti / LMGP / LTM
  • Code CEA : CROMA-CMNE-28-05-2024
  • Contact : gustavo.ardila@univ-grenoble-alpes.fr

Optique intégrée pour le développement de composants multi-puces dédiés à la génération de signaux térahertz.

Mail Sélection

Date de début : 01/10/2024

Offre n° CROMA-PHOTO-19-03-2024

                                                             SUJET DE THESE 2024 :

                                              Optique intégrée pour le développement de composants multi-puces
                                                            dédiés à la génération de signaux térahertz.

 

KEYWORDS :
Laser, Integrated Optics, TeraHertz, Communications

CONTEXT:
The technological development of communications devices, new and futures uses such as video conferencing, streaming, Internet of Things (IOT), 6G, AI, continue to further increase the pressure on telecommunications systems to reduce latency while simultaneously increasing both data rates and the number of connected devices. This recurring problem in the world of telecommunication leads to different communication generation (3G,4G, 5G…).
The frequency bands currently used for telecommunications already cover a large part of the spectrum, including the experimental bands at 60 GHz in the 5G standard. To tackle this problem, 6G plans to use sub-terahertz frequencies (>100GHz) and European roadmap expects to launch commercial products as soon as 2030. Systems operating at such frequencies are difficult to conceive because they are not compatible with standard architectures. Optical technics offer competitive solutions to reach these band, and even higher frequencies. Such realization is also of interest for a wide range of application, including spectroscopy, sensing, radars…
The ideal solution would rely on high performance integrated devices, compatible with current communications systems and capable of evolving to meet the demand of future needs.
At the CROMA laboratory, we recently demonstrated the use of co-integrated lasers on glass for communication system and the generation of continuous carrier at frequency up to terahertz (300GHz) with outstanding spectral properties.

OBJECTIVES:
The PhD work will be carried out as a part of a national research project, involving academic and industrial partners. Our goal is to fabricate a co-integrated multi-chip module for the generation and high speed modulation of terahertz signals. The candidate will focus on the design, manufacturing, characterization and simulation of the laser modules. The integrated laser chips will be produced using the technological facilities available at the CROMA,
including dedicated clean room, with the help of technical support, and advanced characterization systems (atomic force microscopy, dedicated optical benches…).
The laser chip will be optically and mechanically interfaced with a Lithium Niobate chip realized by an industrial partner, specifically for this project. Consequently, the applicant will be involved in the co-design of the two structures and in the definition of interconnecting solution of the two chips. The module will be packaged to be characterized and tested by different partners. The candidate will be involved in experiments at the different sites during
the project.

EXPECTED WORK:

  • Model and simulation of the manufacturing process, including the fabrication of waveguides using ion exchange techniques and the realization of Bragg grating by photolithographic process.
  •  Laser Manufacturing including clean room process, molecular bonding, dicing and polishing

PhD Position

  •  Characterization of components, including geometrical (AFM) and optical evaluation (mode profile, gain/loss, spectral measurements… )
  • Advanced characterizations: optical intensity noise, optical and RF linewidth will be estimated using opto-RF characterizations. Preliminary communication experiments will be carried-out at the CROMA laboratory using advanced modulations, including optical coherent formats.
  • Collaboration with industrial and academic partners from design to experimental validation.

The work plan is composed of different steps:

  • bibliographic studies to determine the current state-of-art and position the thesis results
  • Analysis and handling of in-house existing simulation tools
  •  trainings on fabrication process and characterization tools
  • reporting : technical reports, scientific publication and conferences

APPLICANTS:
We are looking for candidates inclined to develop advanced skills in the manufacturing and characterization of integrated optics and laser devices. Theoretical training in electromagnetism and laser physic is highly recommended, if not essential. The doctorate will benefit from an environment recognized both for its scientific level (in the top 5 of the world’s innovative cities, 25.000 researchers, 65000 Students…) and for its environment (French Alps).

The laboratory facilities being located in secured areas, the final decision is also depending on the acceptance of the application by a security officer.

The thesis funding is part of a national research project already underway.
Applications should include CV, cover letter, academic marks and diplomas.
Expected starting date: Oct. 2024

For more details, please contact:
Julien POËTTE julien.poette@grenoble-inp.fr
Lionel BASTARD lionel.bastard@grenoble-inp.fr
Jean-Emmanuel BROQUIN jean-emmanuel.broquin@grenoble-inp.fr

  • Mots clés : Sciences pour l'ingénieur, Electronique et microélectronique - Optoélectronique, FMNT, IMEP-LaHc
  • Laboratoire : FMNT / IMEP-LaHc
  • Code CEA : CROMA-PHOTO-19-03-2024
  • Contact : julien.poette@grenoble-inp.fr

Développement et mise en œuvre de méthodes de caractérisation hyperfréquence des résines de moulages destinées au packaging de circuits intégrés 3D

Mail Sélection

Date de début : 01/11/2024

Offre n° CROMA-DHREAMS-30-01-2024

Offre de Thèse
Développement et mise en œuvre de méthodes de caractérisation
hyperfréquence des résines de moulages destinées au packaging de circuits intégrés 3D

 


Contexte et objectif :

Dans le cadre d’un projet IPCEI (Projets Importants d’Intérêt Européen Commun) en  collaboration avec la société STMicroelectronics, nous nous intéressons à la caractérisation  diélectrique hautes fréquences (jusque 100 GHz) de résines de moulage. Ces dernières sont  nécessaires à la réalisation des boitiers d’encapsulation (packaging) des circuits intégrés 3D.
Le rôle des boitiers est d’assurer une isolation électrique et une protection mécanique des  circuits intégrés.

La caractérisation consiste à déterminer les propriétés électriques des résines, notamment la permittivité complexe (appelée aussi « fonction diélectrique » ou paramètres diélectriques), sur une large bande de fréquence (1 GHz – 100 GHz). Elle requiert deux étapes : une étape de mesure hyperfréquence et une étape d’extraction de la fonction diélectrique à partir des paramètres mesurés.
La connaissance des propriétés électriques des résines est essentielle pour évaluer et prédire les performances des circuits intégrés(C.I.). Le cas échéant, les performances des C.I. pourront être optimisées en choisissant les résines ayant les meilleures propriétés pour une application donnée.

Description de travaux à réaliser :
L’originalité de ce travail de thèse consiste à mettre en œuvre différentes techniques microondes ou hyperfréquence de caractérisation afin d’extraire les paramètres diélectriques des résines de moulage sur un large spectre de fréquence.
Les techniques à développer pourront dans un premier temps s’appuyer sur des méthodes classiques et connues, si les contraintes liées à leurs mises en œuvre restent limitées. Il s’agit en particulier des techniques de caractérisation suivantes :

  • En lignes de transmission, en guides d’ondes. Techniques large bande de fréquence dites guidées.
  • En cavités résonantes, résonateurs en ligne de transmission ou en anneau. Techniques à fréquences discrètes dites résonnantes.

L’intérêt de mettre en œuvre les différentes techniques exposées ci-avant réside dans la possibilité de réaliser des comparaisons croisées des résultats obtenus. Ceci permettra aussi de pouvoir valider des techniques récemment développées ou inédites dans leur mise en œuvre, potentiellement bien mieux adaptées à notre problématique. Ces techniques sont décrites ci-après, leurs développements figurent aussi au programme de ces travaux de thèse.
Dans une seconde étape, il sera demandé d’apporter une contribution conséquente sur :

  • Le perfectionnement d’une méthode de caractérisation [1] [2] ne demandant pas de concevoir des dispositifs ou cellules de test spécifiques : le matériau (la résine de moulage) est analysé tel qu’il se présente. Il s’agit d’une méthode dite par « posé de pointes » que le laboratoire a commencé à développer et qui a fait l’objet de deux publications. Cette méthode demande néanmoins des améliorations sur les aspects suivants :
    * La précision des pertes diélectriques extraites (rappels : les pertes diélectriques sont associées à la partie imaginaire de la permittivité complexe d’un matériau).         * Le fait de pouvoir s’affranchir de la mesure d’un second matériau de référence pour pouvoir extraire la permittivité complexe des résines de moulage, le premier matériau de référence étant l’air. Des réflexions sont actuellement menées pour s’affranchir de cette mesure étant donné qu’elle conduit à faire une hypothèse forte sur le processus de caractérisation.

Le développement d’une méthode de caractérisation en espace libre. Ce travail est encore inédit pour le laboratoire, notamment au regard des fréquences visées et des contraintes engendrées par la faible maturité technologique (l’échantillon de test ne peut pas prendre toutes les formes et dimensions à souhait) des résines de moulage. L’échantillon de résine de moulage sera placé entre deux antennes [3]. L’analyse pourra s’effectuer au moyen :

  •  d’une mesure différentielle en transmission de l’échantillon.
  •  d’une routine d’extraction des paramètres diélectriques. Cette routine sera à développer.

Dans cette technique, les antennes étant forcément opérationnelles sur une plage de fréquences donnée, la mesure n’est plus dite large bande. Ainsi, il est envisagé d’utiliser plusieurs jeux d’antennes pour couvrir un spectre de fréquence plus large.

Une ouverture sur un travail conduisant au développement d’une technique de caractérisation qui permet l’extraction de la fonction magnétique, conjointement à celle diélectrique, est également envisagée. L’impact de la température et des procédés de fabrication microélectronique sur ces fonctions pourra également être étudié ainsi que les performances d’un composant typique (ligne de transmission par exemple) en présence de la
résine de moulage.

Pour débuter les travaux sur des bases solides et des pistes pertinentes, il s’agira de réaliser préalablement une étude bibliographique des différentes techniques de caractérisation existantes et une analyse fine de l’état de l’art. Une synthèse de cette étude sera à produire.

Laboratoire d’accueil et lieux des travaux :
Le doctorant ou la doctorante sera accueilli et réalisera ses travaux dans les locaux du laboratoire CROMA, sur le site du Bourget du Lac (UMR CNRS 5130, Bâtiment Chablais, 21 rue du lac de la Thuile, 73376 Le Bourget du Lac).
Il sera amené à se déplacer au sein de l’entreprise STMicroelectronics (12 Rue Horowitz, 38000 Grenoble) pour participer à l’élaboration (conception et fabrication) de dispositifs et échantillons de test. Dans le cadre de la collaboration avec STMicroelectronics, l’entreprise aura donc la charge de fournir tous les véhicules de test nécessaires à l’analyse des résines de moulage.

Rayonnement scientifique :
Le doctorant ou la doctorante s’impliquera dans la valorisation des résultats obtenus en les présentant dans des congrès nationaux et internationaux.

Formation du doctorant :
Le doctorant ou la doctorante suivra une formation sur la prise en main du logiciel de simulation électromagnétique Ansys HFSS, ainsi que celle qui traite des techniques de mesure hyperfréquence sur les équipements disponibles au laboratoire.

Équipements expérimentaux utilisés :
Le site du Bourget du Lac est équipé d’une plateforme de mesure hyperfréquence qui inclut (entre autres) :

    •  Un analyseur vectoriel de réseaux Keysight PNA-X N5247A (4 ports jusque 67 GHz, avec extension 110 GHz sur 2 ports).
    • Une station de mesure sous pointes Elite 300 pour mesure C. I. sur Wafer 200 et 300 mm
    • Pour les besoins de rétro-simulations, un profilomètre KLA D500 est aussi à disposition pour obtenir les grandeurs géométriques réelles des dispositifs mesurés.

Profil recherché :

  • Niveau d’étude : Master 2R ou Ingénieur en électronique et Radiofréquence.
  • Compétences :
    * Connaissances requises sur l’électromagnétisme, les circuits hautes fréquence.
    * Connaissances appréciées sur la physique des matériaux diélectriques et magnétiques, les logiciels de simulation électromagnétique (tels que HFSS, CST, ADS) et les appareils de mesure radiofréquence (tels que VNA : Vector Network Analyzer).
    *Une maîtrise de la langue anglaise sera appréciée

Expériences : une expérience (stage, projet d’études, …) dans le domaine RF sera appréciée.

Pour candidater :
Envoyez-nous votre CV et lettre de motivation avant le 30/06/2024. La thèse peut démarrer au plus tard le 01/11/2024.

Inscription et salaire :
Le doctorant ou la doctorante s’inscrira à l’école doctorale EEATS et recevra une rémunération mensuelle de 2300€ bruts durant ses 3 années de thèse.

Publications en lien avec ce travail :
[1] https://doi.org/10.1016/j.mejo.2021.104990
[2] https://doi.org/10.1109/SaPIW.2018.8401670
[3] http://dx.doi.org/10.1109/TIM.2006.884283

Contacts :
Gregory Houzet , 04-79-75-81-59, gregory.houzet@univ-smb.fr
Thierry Lacrevaz, 04-79-75-87-46  thierry.lacrevaz@univ-smb.fr

Université Savoie Mont Blanc
Laboratoire CROMA, UMR CNRS 5130, Bâtiment le Chablais
21 rue du lac de la Thuile
73376 Le Bourget du Lac Cedex FRANCE

  • Mots clés : Sciences pour l'ingénieur, Electronique et microélectronique - Optoélectronique, FMNT, IMEP-LaHc
  • Laboratoire : FMNT / IMEP-LaHc
  • Code CEA : CROMA-DHREAMS-30-01-2024
  • Contact : gregory.houzet@univ-smb.fr

Développement de fonctions physiques non-clonables pour accélérateurs neuromorphiques sécurisés.

Mail Sélection

Date de début : 01/01/2024

Offre n° IMEPLAHC-PHOTO-27-10-2023

PHOTONIC PHYSICAL UNCLONABLE FUNCTIONS FOR SECURE NEUROMORPHIC PHOTONIC ACCELERATORS

Application deadline  :
FRIDAY 3 NOVEMBER 2023

The rising needs of processing information at the edge for low latency, high speeds, and energy efficiency purposes leveraging edge-computing as well as IoT devices (75 billion expected by 2025) for data collection and processing demands for more robust and reliable security layers to guarantee hardware integrity and information security.  Security layers are a fundamental part of our hardware and digital infrastructure fulfilling several key functions e.g.,  assuring that a hardware sub-system is not counterfeit, that a client has authentication rights onto a server or that  generated/processed data come from a non-corrupted accelerator. Counterfeiting poses a serious threat to the  security of large-scale systems relying on the integration of several sub-systems e.g., counterfeit chips have been  found in ballistic missiles and fighter jets. Besides, the massive exchange of sensitive data in the context of edge
computing for applications such as autonomous driving, requires that pitfalls shall not be exploited by an attacker to
compromise the security of the platform.

The focus of this work will be to develop novel security layers that do not rely on the physical storage of a digital secret key in memory, potentially accessible exploiting SW or HW vulnerabilities. Physical unclonable functions (PUFs) represent a recent class of security layers that can be used for applications in cryptography e.g., end-to-end encryption, blockchain, secure data storage etc. Fabrication tolerances in CMOS platforms guarantee the intrinsic HW
unclonable character of such solutions and contribute to the complexity of their behavior for well-designed  architectures.

Although electronic PUFs are currently predominant, they have been shown to be vulnerable to machine learning  attacks. Conversely, photonic PUFs have demonstrated an increased strength against machine learning attacks due to  their richer responses and larger number of physical quantities for key generation e.g., phase, amplitude, polarization  as well as superior stability and manifold implementations of optical non-linearities.

In the framework of the Horizon Europe research project NEUROPULS (NEUROmorphic energy-efficient secure  accelerators based on Phase change materials aUgmented siLicon photonicS), the PHOTO group at IMEP-LAHC aims to develop novel silicon photonic PUFs for hardware integrity and information security. This work will allow IMEC-LAHCand the other consortium partners involved in security tasks to explore various security protocols at a prototype level (photonic chips will be fabricated by CEA-LETI in a worldwide unique silicon photonics platform with III-V and phasechange materials monolithically integrated) for the next-generation of hardware accelerators based on photonic  neuromorphic architectures interfaced with RISC-V core processors to target edge-computing applications.

In this context we are currently looking for a (m/f) PhD student for a 3-year contract.

JOB DESCRIPTION
This thesis aims to explore novel implementations of photonic PUFs based on CMOS-compatible Silicon Photonics approaches for applications in hardware integrity (identification) and information security (secure authentication, data signature, encryption…).
The work will involve (i) exploring various photonic architectures by means of system-level simulations considering the  role of fabrication tolerances on the device modelling, (ii) assessing experimentally the performance of the prototypes  (fabrication carried out by CEA-LETI), (iii) carrying out an experimental analysis in terms of robustness and reliability by  exploiting techniques well-known in the PUF and reliability communities, and (iv) proposing novel device/system  designs and strategies to build more robust and reliable PUFs. The work will involve behavioral and system-level modeling of photonic devices and architectures, robustness and reliability analysis of the designed architectures, and the proposal of novel design/system-level solutions.

PROFILE
You have or are about to obtain an MSc in Electronic or Physical Engineering with strong experience in at least one of  the following areas: analog / digital / photonic integrated circuit design, multi-disciplinary or system-level modelling.
Previous experience in design and characterization of photonic devices/systems is a plus. Excellent written and verbal  communication skills in English. Fluency in French is also a plus, but not mandatory.

About IMEP-LaHC and PHELMA
The Institut de Microélectronique Electromagnétisme Photonique & LAboratoire d’Hyperfréquences & de Caractérisation, IMEP-LaHC, is a « unité mixte de recherche » (CNRS / Grenoble INP / UGA / Université Savoie Mont Blanc) of 110 people strongly committed in research activities related to micro- and nano-electronics, microphotonics, micro- and nano-systems, microwaves and microwave-photonics. The PHOtonics Terahertz and Optoelectronics (PHOTO) group is a leader in the broad field of photonics and high-speed frequencies, with research projects and collaborations at both national, European, and international level.
Grenoble Institute of Technology (PHELMA school), who issues the PhD degree, is a member of the “Grandes Écoles”, a prestigious group of French institutions dedicated to engineering and scientific research.
More information about the scientific and industrial environment around Grenoble and its surroundings can be found  here:
https://www.nature.com/articles/d41586-023-00109-x

Send CV and statement of purpose (in English or French) to
Fabio Pavanello – email: fabio.pavanello@cnrs.fr

  • Mots clés : Sciences pour l'ingénieur, Electronique et microélectronique - Optoélectronique, FMNT, IMEP-LaHc
  • Laboratoire : FMNT / IMEP-LaHc
  • Code CEA : IMEPLAHC-PHOTO-27-10-2023
  • Contact : fabio.pavanello@cnrs.fr
En naviguant sur notre site, vous acceptez que des cookies soient utilisés pour vous proposer des contenus et services adaptés à vos centres d’intérêts. En savoir plus
X