All opportunities

Offers : 64

(filled) Development of microfluidic circuits for various applications: integrated optical sensor based on bacterial viability and biosensors based on electrical detection.

Mail Sélection

Start date : 25/04/2022

offer n° IMEPLAHC-PHOTO-01-18-2022

M1 INTERNSHIP topics :
Development of microfluidic circuits for various applications:
integrated optical sensor based on bacterial viability and biosensors based on electrical detection. 

 

Le domaine de la microfluidique sert pour de nombreuses applications mettant en jeu l’écoulement de fluide d’intérêt divers dans des canaux microfluidiques. Cela concerne la santé avec par exemple l’injection de médicaments par voie liquide, le diagnostic moléculaire in vitro mis en jeu dans les biocapteurs. L’environnement est également concerné avec le contrôle de la qualité des eaux. Le besoin se fait aussi de plus en plus ressentir dans l’agro-alimentaire où la détection de toxines ou bactéries dans des préparations liquides est crucial.
Plus particulièrement dans les biocapteurs, des canaux microfluidiques réalisés par exemple dans du PDMS permettent de faire cheminer des solutions liquides de très faibles volumes d’analyte à détecter vers les parties sensibles du biocapteur. Cela peut être suivi par une séquence de rinçage permettant de faire intervenir un autre analyte. Ainsi des évènements de reconnaissance successifs peuvent être obtenus en temps réel. Cette voie constitue une alternative bien plus prometteuse que la mesure en statique, plus communément utilisée, et où l’analyte à analyser est simplement mis en contact avec la partie sensible du biocapteur. Cela s’explique par le fait que la microfluidique constitue un vrai challenge technologique en termes de réalisation reproductible des différentes étapes de moulage du PDMS, d’adhérence du PDMS sur le biocapteur, sans compter la partie relative à la maitrise de l’écoulement des fluides dans des canaux dont les différents rapports de forme peuvent influer sur le résultat final.

Le laboratoire IMEP-LaHC collabore depuis trois années avec des spécialistes de biochimie pour développer un capteur intégré multiphysique de détection de pollutions dans des eaux de rivière ou des réseaux de collectivités. L’objectif est d’utiliser des bactéries comme indicateurs de ces pollutions. Les propriétés de permittivité et de conduction diffèrent entre les bactéries mortes ou vivantes. L’idée consiste donc à mesurer par impédancemétrie et interférométrie optique la viabilité d’une population bactérienne mise en contact de polluants. L’utilisation de canaux microfluidique en PDMS est une solution très intéressante pour ce genre de capteur car le PDMS est poreux à l’oxygène ce qui permet d’assurer une oxygénation correcte des bactéries.
Le capteur co-intègre des fonctions électrique et photonique sur un substrat de verre et de ce fait, l’adhérence de canaux microfluidiques sur ce type de substrat sera également étudié lors du stage. Le design du capteur est également conçu de sorte à être durable et facilement nettoyable.
Un objectif clé de ce stage sera donc également d’étudier des méthodes de nettoyage efficace des canaux microfluidiques. Sur ce point, des échanges avec les partenaires biochimistes permettront de tester des méthodes de nettoyage et de stérilisation compatibles avec les procédés employés en microbiologie.

Concernant l’application biocapteur, un dispositif d’arrivée de fluides différents, en provenance de l’entreprise Elverflow vers un dispositif microfluidique en PDMS est en cours de montage pour des biocpateurs de type NWFET (NanoWire Field Effect Transistors) en vue de la détection électrique d’espèces chargées (solution pH, solution d’ADN divers) (cf Figure).

L’objectif sera de finaliser le montage, d’effectuer les calibration et les premières mesures avec les doctorants. Celles devraient démontrer l’apport de la microfluidique sur les NWFETs et permettront d’optimiser les caractéristiques puis les performances de ces dispositifs fonctionnant en voie liquide en termes de sensibilité, limite de détection, réversibilité, sélectivité, stabilité et temps d’acquisition. Cela permettra de mettre en avant les difficultés rencontrées et de les résoudre en modifiant, par exemple, la géométrie de certains éléments de la cellule microfluidique.

 

 

Le stage se déroulera dans le cadre de la création de l’axe transverse Capteurs de l’IMEP-LaHC avec la mise en place d’une plate-forme dédiée à la microfluidique.

Durée du stage : 3 mois (salaire d’environ 550 Euros/mois)
Contacts :
Elise Ghibaudo (IMEP-LaHC – Grenoble)
Edwige Bano (IMEP–LaHC – Grenoble)
Valérie Stambouli (LMGP – Grenoble)

  • Keywords : Engineering sciences, Electronics and microelectronics - Optoelectronics, FMNT, IMEP-LaHc
  • Laboratory : FMNT / IMEP-LaHc
  • CEA code : IMEPLAHC-PHOTO-01-18-2022
  • Contact : edwige.bano@phelma.grenoble-inp.fr
  • This Internship position has been filled. Thank you for your interest

(filled) Using the low frequency noise of Semiconductor-On-Insulator devices as a tool for bio-chemical sensing

Mail Sélection

Start date : 01/02/2022

offer n° IMEPLAHC-CMNE-12-08-2021

 

Using the low frequency noise of Semiconductor-On-Insulator devices as a tool for bio-chemical sensing

 

Supervisor/contact:
Christoforos Theodorou, CNRS researcher at IMEP-LAHC christoforos.theodorou@grenoble-inp.fr / 04 56 52 95 49

Scientific context:
In the wide family of bio-chemical sensors, the ISFETs (Ion Sensing Field Effect Transistors) occupy a place of honor thanks to their multiple advantages, e.g. in terms of miniaturization, sensitivity, co- integration with reading circuitry etc.¹. The working principle, known as Charge-Based Sensing (CBS) of such a device is based on the shift of the threshold voltage of a transistor, due to the intentional addition of charges-to-be-detected in the proximity of its channel.
The resulting conductivity/current modulation is then measured in (quasi)-static conditions, in which externally applied voltages are slow enough and the device is assumed at equilibrium at every measurement point. Therefore the transistor’s electrical noise can be a limiting factor for the sensor’s performance.
However, it has been demonstrated that the surface-related noise of the device can itself be used as a sensing tool². This principle, known as Fluctuation-Enhanced Sensing (FES), is based on the effects of dynamic interaction between surface traps and electrons of deposited molecules, leading
to a unique characteristic noise spectrum for each sensing target³. This approach thus promises increased sensitivity and selectivity compared to the CBS methods.

Internship objectives :
The objectives of the internship are to:

  1. Prove the feasibility of the FES method for different types of devices (Bottom Gate SOI FETs,Graphene FETs etc.)
  2. Interpret the measured results
  3. Benchmark the FES method against CBS in terms of sensitivity, selectivity, cost etc.
  4. Perform preliminary tests for pH sensing as an application

During the internship, validation of the proposed methods will be initially performed thanks to simple “model” charges such as carboxylate-functionalized polystyrene latex beads deposited on the Si (or Graphene) film surface. The interest in starting with such particles resides in the simplicity of the deposition from colloidal solutions, without any need of surface functionalization. The amount of charges can also be simply tuned by derail dilutions of the beads or mixtures of charges and uncharged beads.

Requested competences :
The internship is covering a wide panel of know-hows, from the semiconductor device physics to electrical and noise characterization. The candidate must have a very good background in physics and characterization of semiconductor devices. Knowledge of concepts in bio-chemical sensing will be a plus. The candidate is expected to enjoy experimental work and development of adapted protocols.
Scientific curiosity and motivation are mandatory qualities in order to take full advantage of the scientific environment and gain expertise for his/her future career. A continuation (not mandatory) for a PhD thesis around this topic is envisioned.
___________________________________________________________________________________________________________
¹ Bergveld, P. Sensors and Actuators B: Chemical 2003, 88, (1), 1-20; Moser, N.; Lande, T. S.; Toumazou, C.; Georgiou, P. IEEE Sensors Journal 2016, 16, (17), 6496-6514.
²Kish, L. B.; Chang, H. C.; King, M. D.; Kwan, C.; Jensen, J. O.; Schmera, G.; Smulko, J.; Gingl, Z.; Granqvist, C. G. IEEE Transactions on Nanotechnology 2011, 10, (6), 1238-1242;
³ Rumyantsev, S.; Liu, G.; Potyrailo, R. A.; Balandin, A. A.; Shur, M. S. IEEE Sensors Journal 2013, 13, (8), 2818-2822.

  • Keywords : Engineering sciences, Electronics and microelectronics - Optoelectronics, FMNT, IMEP-LaHc
  • Laboratory : FMNT / IMEP-LaHc
  • CEA code : IMEPLAHC-CMNE-12-08-2021
  • Contact : christoforos.theodorou@grenoble-inp.fr
  • This Internship position has been filled. Thank you for your interest

(filled) Terahertz Identification of Materials by Multispectral

Mail Sélection

Start date : 01/02/2022

offer n° IMEPLAHC-PHOTO-11-26-2021

Master internship – 2021-2022
TIMMING PROJECT
TITLE: Terahertz Identification of Materials by Multispectral  Imaging

 

Laboratory: IMEP-LaHC (UMR 5130)
Supervisors: Emilie Hérault/Maxime Bernier
Phone: 04.79.75.87.48
E-mail: emilie.herault@univ-smb. fr / maxime.bernier@univ-smb.fr

Context and objectives:
The field of terahertz waves (THz = 1000 GHz) is very promising for the detection of substances[1] and materials, for security purposes [2], or more generally for non-destructive testing in variousindustrial fields [3]. In the present project, the identification of substances is generally achievedthrough the presence of absorption lines in the THz spectrum, which is sensitive to the bending modes of the constituting molecules. The measurement of the spectral signature and/or the acquisition of a THz image of the sample to be identified over a large bandwidth (point-to-point multispectral imaging) is however often slow, preventing the dynamic study of materials evolving on time scales less than few minutes. TIMMING project aims at developing and studying the performances of innovating techniques and equipment for fast imaging of miscellaneous samples and the study of their sub-second dynamics.

Description of the Research Lab Work:
In this project, we aim at developing an efficient and rapid (real-time) characterization technique, applicable for example to the two application fields mentioned above (security and non-destructive testing). We plan to jointly use the possible specific and discriminating spectral signature of the material tested and a multispectral imaging technique for example to analyze the distribution of the components of a sample, to verify its non-alteration, its belonging to a batch, to identify its provenance and so on. The other idea, which will be prospected during the internship, is based on the use of innovating THz camera associated to THz CW source to perform THz videos.
In addition to the bibliographic work, the student who will be involved in the development of the imaging setup and of a signal processing algorithm based on an innovative theoretical classification/identification tools. He will also use the THz equipments already availlable in the PLATERA characterization platform [4]. In PLATERA, the student will have at his disposal a unique set of measuring equipment and scientific support by teachers-researchers specialized in the THz field.

[1] R. Miles, X.-C. Zhang, H. Eisele, A. Krotkus, « Terahertz Frequency Detection and Identification of Materials end
Objects », NATO Science for Peace and Security Series B: Physics and Biophysics, Springer Nature (2021).
[2] A.U. Sokolnikov, « THz Identification for Defense and Security Purposes », World Scientific (2013).
[3] D. Nüßler, J. Jonuscheit, « Terahertz based non-destructive testing (NDT) – Making the invisible visible »,
Oldenbourg Wissenschaftsverlag April 7 (2020) – DOI 10.1515/teme-2019-0100.
[4] https://www.platera.tech/

  • Keywords : Engineering sciences, Electronics and microelectronics - Optoelectronics, FMNT, IMEP-LaHc
  • Laboratory : FMNT / IMEP-LaHc
  • CEA code : IMEPLAHC-PHOTO-11-26-2021
  • Contact : maxime.bernier@univ-smb.fr
  • This Internship position has been filled. Thank you for your interest

(filled) Measurement system for millimeter-wave antenna characterization

Mail Sélection

Start date : 01/02/2022

offer n° IMEPLAHC-DHREAMS-11-19-2021

Master 1 training period / 2022
Measurement system for millimeter-wave antenna characterization at IMEP-LAHC
Laboratory: IMEP-LaHC – MINATEC – Grenoble

 

 

Supervisors / contacts:
Pascal XAVIER (scientific supervisor) pascal.xavier@univ-grenoble-alpes.fr Phone: 04 56 52 95 69
Nicolas CORRAO (technical support) nicolas.corrao@grenoble-inp.fr Phone: 04 56 52 94 69

Context and objectives:
The constant development of communication standards (LAN, 5G, 6G…) and the emergence of new applications based on wireless propagation (Internet of Things, RFID chips, automotive radar systems, radar imaging radar sensors …) bring new technical requirements. Designing innovative antenna devices in the RF and millimeter-wave (mmW) spectrum is one of the main fields of interest for researchers at IMEP-LaHC Lab. Consequently, there is a strong need of
measurement setups to test and evaluate antenna parameters. Such characterizations are challenging because they require specific environmental conditions (quiet zone, free of EM perturbations or reflections) associated with a dedicated acquisition system.

This kind of installation is already available on HYPER platform at IMEP-LaHC. An indoor antenna test range is installed in a fully anechoic chamber to eliminate all reflections from the walls. This setup provides a powerful and accurate far-field measurement solution, typically used up to 40GHz. Therefore, a RF analyzer coupled with a 3-axis positioning system is used to perform the 3D radiation pattern measurement of the antenna under test. However, as the frequency increases, new strengths have to be considered. For example, at millimeter-wave frequencies (typically above 50GHz), antenna size becomes smaller and antenna gain decreases. Thus, the device is more sensitive to its close environment (connectors, mechanical parts…) which can strongly impacts its radiation. Moreover, the large attenuation at these frequencies must be taken into account when designing the measurement setup (short interconnection paths, antenna as close as possible to circuitry…).

Our existing antenna test range can’t meet all these new requirements. Therefore, another measurement solution has to be developed and dedicated especially to millimeter-wave devices. With this new separate setup, user should be able to extract 3D (quasi-sphere) radiation pattern and
gain from miniaturized or integrated devices, operating in V band (50 – 75GHz) or W band (75- 110GHz). Antenna under test could be fed either with precision coaxial connector or with microelectronic probe. In both cases, a special attention will be given to the surrounding parts of the antenna, in order to reduce measurement error caused by unwanted reflections.

Description of the work:
The required measurement setup described above is already under construction. The main parts and components are indeed at disposal on HYPER platform. A new 2-axis positioning system has been designed and fabricated. This one is also available and ready to work. It can be easily controlled using dedicated computer and software tool.

This lab work consists in several tasks, including existing setup improvements, design of still missing mechanical parts, final developments and installation, tests and validation of the whole system and finally training of users. All this tasks will bring the student to improve its skills in electromagnetism (RF and millimeter-wave measurements), obviously focused on antenna characterization methods. Even if the main part of the setup already exists, a lot of mechanical
adjustments and assemblies as well as RF tests have to be done to complete the project.

The proposed lab work implies of course a strong teamwork.

  • Keywords : Engineering science, Electronics and microelectronics - Optoelectronics, FMNT, IMEP-LaHc
  • Laboratory : FMNT / IMEP-LaHc
  • CEA code : IMEPLAHC-DHREAMS-11-19-2021
  • Contact : pascal.xavier@univ-grenoble-alpes.fr
  • This Internship position has been filled. Thank you for your interest

(filled) Silicon on insulator sensors based on out-of-equilibrium reading for in-liquid applications

Mail Sélection

Start date : 01/02/2022

offer n° IMEPLAHC-CMNE-11-4-2021

Silicon on insulator sensors based on out-of-equilibrium reading for in-liquid applications

Laboratory: IMEP-LAHC

 

 

Internship duration and period:
4-6 months, between February 2022 to July 2022.

Advisor:
Irina Ionica, Irina.Ionica@grenoble-inp.fr

Context/objectives:
In the wide family of bio-chemical sensors, the ISFETs (Ion Sensing Field Effect Transistors) occupy a place of honor thanks to their multiple advantages such as miniaturization, sensitivity, co-integration with reading circuitry, connectivity, real-time monitoring, etc¹. The classical working principle is based on the shift of the threshold voltage of the transistor, induced by charges added in the proximity of its channel. Our team proved that SOI based devices are compatible with
an alternative original detection method, based on the shift of the out-of-equilibrium body potential (VB, in the figure aside).
The major advantage of measuring VB instead of the classic drain current /conductance resides in the strong potential signature, in a region were the current level is very low². This simplifies the measurement and can reduce the power consumption of the sensor.
A first objective of the internship is to fully bench-mark the two sensing methods on the same device.

In order to take this proof-of-concept from the “idea”-stage to real applications, eventually cointegrated with “green” materials, we’ll modify the architecture of the device and make it appropriate for liquid sensing and/or extended gate configuration. Indeed when moving to in-liquid applications, one expects to solve two (contradictory) issues: (1) the solid-state device must be encapsulated and protected from the liquid environment and (2) its sensing surface needs to be exposed to the liquid containing species to be sensed. A real benefit is to design and test a configuration with a disposable sensing surface that could be “plugged-in” an SOI device for the VB reading. The key-point at each development stage will be to ensure that the out-of-equilibrium potential is always detectable and even optimized in the alternative architectures.

Requested competences:
The topic is multidisciplinary and requires a wide panel of skills, covering technology, physics of semiconductor devices, electrical characterization and extraction of electrical parameters, simple functionalization steps, fluidics-related aspects…
The candidate is expected to enjoy experimental work, development of adapted protocols and be creative with respect to the possible solutions.

Application instructions:
send your CV, motivation letter (or e-mail) and transcript of records of the last 2 years to Irina.Ionica@grenoble-inp.fr.
We expect this internship to lead to a PhD thesis and we prefer candidates who are willing to continue during the PhD. An excellent track of records is mandatory.
—————————————————————————————————————————————————————————————-
1 Bergveld, P. Sensors and Actuators B: Chemical 2003, 88, (1), 1-20; Moser, N.; Lande, T. S.; Toumazou, C.; Georgiou, P. IEEE Sensors Journal 2016, 16, (17), 6496-6514.

2 Benea, L.; Bawedin, M.; Delacour, C.; Ionica, I. Solid-State Electronics 2018, 143, 69-76. Alepidis, M.; Bouchard, A.; Delacour, C.; Bawedin, M.; Ionica, I. ECS Meeting Abstracts 2021, MA2021-01, (59),
1589-1589.

  • Keywords : Engineering sciences, Electronics and microelectronics - Optoelectronics, IMEP-LaHc, LMGP
  • Laboratory : IMEP-LaHc / LMGP
  • CEA code : IMEPLAHC-CMNE-11-4-2021
  • Contact : Irina.Ionica@grenoble-inp.fr
  • This Internship position has been filled. Thank you for your interest
More information
X