News :

June 28 2020

Resistive memory technologies with multi-scale time constants for neuromorphic architectures

The work is based on a dedicated commitment that novel hardware and novel computational concepts must be co-evolved in a close interaction between nano-electronic device engineering, circuit and microprocessor design, fabrication technology and computing science (machine learning and nonlinear modeling). A key to reflecting “hardware physics” in “computational function” and vice versa is the fundamental […] >>

June 28 2020

Simulation and electrical characterization of an innovative logic/memory CUBE for In-Memory-Computing

For integrated circuits to be able to leverage the future “data deluge” coming from the cloud and cyber-physical systems, the historical scaling of Complementary-Metal-Oxide-Semiconductor (CMOS) devices is no longer the corner stone. At system-level, computing performance is now strongly power-limited and the main part of this power budget is consumed by data transfers between logic […] >>

June 28 2020

Design of innovative time-domain microphone readout using Injection Locked Oscillators

Nowadays, Voice Activity Detection is a hot research topic. This application needs the design of high linearity, high dynamic ( > 100 dBSpl) and low noise (< 25 dBSpl) microphones putting stringent requirement on both the transducer and the readout electonics. State of the art microphone readouts are based on a classical amplifier and sigma […] >>

June 28 2020

coupling of optomechanical resonators in quantum regime for microwave to Infrared photons conversion

The most promising quantum computing platforms today are operated at very low temperatures at microwave frequencies, while telecommunication networks capable of preserving information in non-conventional states (superposition, entanglement) use infrared photons in non-cryogenic environments. Current frequency conversion means offer poor conversion efficiencies (10-6), which make them unable to preserve the quantum nature of information. A […] >>

June 28 2020

Nano-optomechanical silicon accelerometer for high performance applications

Inertial sensors (accelerometers and gyrometers) are at the heart of a large number of consumer-and low-cost applications such as smartphones and tablets, but also higher added value, higher-performance applications such as navigation for autonomous vehicles, aeronautics or space. Silicon microsystems (MEMS) are today a very mature technology and several millions are sold each year. However, […] >>
More information
X