News : IRIG
January 01 2023
Modeling silicon and germanium spin qubits
Silicon/Germanium spin qubits have attracted increasing attention and have made outstanding progress in the past two years. In these devices, the elementary information is stored as a coherent superposition of the spin states of an electron in a Si/SiGe heterostructure, or of a hole in a Ge/SiGe heterostructure. These spins can be manipulated electrically owing […] >>
January 01 2023
Strain driven Group IV photonic devices: applications to light emission and detection
Straining the crystal lattice of a semiconductor is a very powerful tool enabling controlling many properties such as its emission wavelength, its mobility…Modulating and controlling the strain in a reversible fashion and in the multi% range is a forefront challenge. Strain amplification is a rather recent technique allowing accumulating very significant amounts of strain in […] >>
January 01 2023
Catalytic properties at the nanoscale probed by time-resolved Bragg coherent diffraction imaging
The postdoctoral research project is part of a five-year ERC-funded project called CARINE (Coherent diffrAction foR a Look Inside NanostructurEs towards atomic resolution: catalysis and interfaces – https://carine-erc.eu) to develop and apply new coherent diffraction imaging (CDI) capabilities. The main objective of the project is to image nanostructures in situ during reaction and to reveal […] >>
January 01 2023
Nano-imaging with deep neural networks
The postdoctoral research project is part of a five-year ERC-funded project called CARINE (Coherent diffrAction foR a Look Inside NanostructurEs towards atomic resolution: catalysis and interfaces – https://carine-erc.eu) to develop and apply new coherent diffraction imaging (CDI) capabilities. We want to develop and apply machine learning and, more generally, data science approaches for imaging and […] >>
January 01 2023
Superconductivity in systems with local inversion symmetry breaking
Global inversion symmetry or time reversal symmetry have been long regarded as fundamental ingredients to form a superconducting state. However nowadays, several systems have been found which are superconducting even though they break locally inversion symmetry, sometimes together with broken time reversal symmetry. Prominent examples are the uranium based ferromagnetic superconductors URhGe and UCoGe (breaking […] >>